コード例 #1
0
        private static double GetGaussianQuantile(double probability, double x0, double p0, double x1, double p1)
        {
            double mean, stddev;

            GetGaussianFromQuantiles(x0, p0, x1, p1, out mean, out stddev);
            return(MMath.NormalCdfInv(probability) * stddev + mean);
        }
コード例 #2
0
ファイル: Gaussian.cs プロジェクト: 0xCM/arrows
 /// <summary>
 /// Returns the value x such that GetProbLessThan(x) == probability.
 /// </summary>
 /// <param name="probability">A real number in [0,1].</param>
 /// <returns></returns>
 public double GetQuantile(double probability)
 {
     if (probability < 0)
     {
         throw new ArgumentOutOfRangeException("probability < 0");
     }
     if (probability > 1)
     {
         throw new ArgumentOutOfRangeException("probability > 1");
     }
     if (this.IsPointMass)
     {
         return((probability == 1.0) ? MMath.NextDouble(this.Point) : this.Point);
     }
     else if (Precision <= 0.0)
     {
         throw new ImproperDistributionException(this);
     }
     else
     {
         double mean     = MeanTimesPrecision / Precision;
         double sqrtPrec = Math.Sqrt(Precision);
         return(MMath.NormalCdfInv(probability) / sqrtPrec + mean);
     }
 }
コード例 #3
0
 public static int Histogramize(double value, double mean, double deviation, int numberOfBins)
 {
     for (int ii = 1; ii <= numberOfBins; ii++)
     {
         double above = MMath.NormalCdfInv(((double)ii) / ((double)numberOfBins));
         if (((value - mean) / deviation) < above)
         {
             return(ii - 1);
         }
     }
     return(numberOfBins - 1);
 }
コード例 #4
0
        private static void GetGaussianFromQuantiles(double x0, double p0, double x1, double p1, out double mean, out double deviation)
        {
            double z0 = MMath.NormalCdfInv(p0);
            double z1 = MMath.NormalCdfInv(p1);
            // solve for the equivalent Gaussian mean and stddev
            Matrix Z = new Matrix(new double[, ] {
                { 1, z0 }, { 1, z1 }
            });
            DenseVector X = DenseVector.FromArray(x0, x1);
            DenseVector A = DenseVector.Zero(2);

            A.SetToLeastSquares(X, Z);
            mean      = A[0];
            deviation = A[1];
        }
コード例 #5
0
ファイル: Gaussian.cs プロジェクト: shyamalschandra/infer-1
 /// <summary>
 /// Returns the value x such that GetProbLessThan(x) == probability.
 /// </summary>
 /// <param name="probability">A real number in [0,1].</param>
 /// <returns></returns>
 public double GetQuantile(double probability)
 {
     if (this.IsPointMass)
     {
         return((probability == 1.0) ? (this.Point + MMath.Ulp(this.Point)) : this.Point);
     }
     else if (Precision <= 0.0)
     {
         throw new ImproperDistributionException(this);
     }
     else
     {
         double mean     = MeanTimesPrecision / Precision;
         double sqrtPrec = Math.Sqrt(Precision);
         return(MMath.NormalCdfInv(probability) / sqrtPrec + mean);
     }
 }