コード例 #1
0
ファイル: MainWindow.xaml.cs プロジェクト: 4egod/FlowLinkML
        private async void predict_predict_Click(object sender, RoutedEventArgs e)
        {
            List <float> predictions = new List <float>();

            int deviceId = int.Parse(train_device.Text);

            string s = $"Count: {predictData.Count()}\n";

            var task = Task.Run(() =>
            {
                MLModel model = new MLModel($"{deviceId}.mlm");

                for (int i = 0; i < predictData.Count; i++)
                {
                    var prediction = model.Predict(predictData[i]);
                    predictions.Add(prediction);
                    s += $"{predictData[i].Timestamp.ToString("HH")}: {predictData[i].Volume:f1} -> {prediction:f1}" +
                         $" ({((predictData[i].Volume != 0) ? 100 - predictData[i].Volume / prediction * 100:0):f2}%)\n";
                }
            });

            await Process(task);

            DrawChild(predictions, "Prediction");
            Log(s);
        }
コード例 #2
0
ファイル: MainWindow.xaml.cs プロジェクト: 4egod/FlowLinkML
        private async void train_test_Click(object sender, RoutedEventArgs e)
        {
            List <float> predictions = new List <float>();

            MLModel.Metrics metrics = null;

            var task = Task.Run(() =>
            {
                for (int i = 0; i < trainData.Count; i++)
                {
                    var prediction = _mlModel.Predict(trainData[i]);
                    predictions.Add(prediction);
                }

                metrics = _mlModel.Validate();
            });

            await Process(task);

            DrawChild(predictions, "Prediction");

            Log($"ML model metrics:\n" +
                $"Mean absolute error: {metrics.MeanAbsoluteError:f2}\n" +
                $"Mean squared error: {metrics.MeanSquaredError:f2}");
        }
コード例 #3
0
        public async Task PredictAll()
        {
            _applicationStatusManager.ChangeCurrentAppStatus(Enums.Status.Working, "");
            try
            {
                Status = "starting ml model...";
                //load config
                var confDir    = Path.Join(Environment.GetFolderPath(Environment.SpecialFolder.LocalApplicationData), "lacmus");
                var configPath = Path.Join(confDir, "appConfig.json");
                _appConfig = await AppConfig.Create(configPath);

                var config = _appConfig.MlModelConfig;
                using (var model = new MLModel(config))
                {
                    await model.Init();

                    var count       = 0;
                    var objectCount = 0;
                    Status = "processing...";
                    foreach (var photoViewModel in _photos.Items)
                    {
                        try
                        {
                            photoViewModel.Annotation.Objects = await model.Predict(photoViewModel);

                            photoViewModel.BoundBoxes = photoViewModel.GetBoundingBoxes();
                            if (photoViewModel.BoundBoxes.Any())
                            {
                                photoViewModel.Photo.Attribute = Attribute.WithObject;
                                photoViewModel.IsHasObject     = true;
                            }
                            objectCount += photoViewModel.BoundBoxes.Count();
                            count++;
                            PredictProgress     = (double)count / _photos.Items.Count() * 100;
                            PredictTextProgress = $"{Convert.ToInt32(PredictProgress)} %";
                            _applicationStatusManager.ChangeCurrentAppStatus(Enums.Status.Working, $"Working | {(int)((double) count / _photos.Items.Count() * 100)} %, [{count} of {_photos.Items.Count()}]");
                            Console.WriteLine($"\tProgress: {(double) count / _photos.Items.Count() * 100} %");
                        }
                        catch (Exception e)
                        {
                            Log.Error(e, $"Unable to process file {photoViewModel.Path}. Slipped.");
                        }
                    }
                    Status = "stopping ml model...";
                    await model.Stop();

                    PredictTextProgress = $"predict {_photos.Count} photos.";
                    Log.Information($"Successfully predict {_photos.Count} photos. Find {objectCount} objects.");
                }
            }
            catch (Exception e)
            {
                Status = "error.";
                Log.Error(e, "Unable to get prediction.");
            }
            _applicationStatusManager.ChangeCurrentAppStatus(Enums.Status.Ready, "");
        }
コード例 #4
0
    public async Task GetPrediction(float[] image)
    {
        var digit      = MinstDigit.FromList(image, false);
        var prediction = ml.Predict(digit);

        prediction.Label = prediction.Score.Select((value, index) => new { Value = value, Index = index }).Aggregate((a, b) => (a.Value > b.Value) ? a : b).Index;
        await Clients.Caller.SendAsync("receivePrediction", image, prediction);

        await Clients.All.SendAsync("receiveBackground", image, prediction);
    }
コード例 #5
0
        // Attempt AI Prediction:
        public JsonResult OnGetAIPrediction()
        {
            // Get the query string:
            var    queryStringObject = Request.QueryString;
            string queryString       = queryStringObject.ToString();

            // Parse the query string and extract parameters:
            string[] queryParams = queryString.Split("&");
            string   imageURL    = queryParams[1].Replace("imageURL=", "");

            // Attempt to return the response:
            return(new JsonResult(MLModel.Predict(imageURL).Prediction));
        }
コード例 #6
0
ファイル: Startup.cs プロジェクト: bknutson77/AgricultureAI
        /// <summary>
        /// This is the starting point of the server program. Here we assign the app a configuration and initialize Machine Learning engines.
        /// </summary>
        /// <param name="configuration">An IConfiguration object</param>
        public Startup(IConfiguration configuration)
        {
            Configuration = configuration;

            // Set Firebase URL:
            RestfulDBConnection.FIREBASE_URL = Configuration["FirebaseURL"];

            // Initialize Machine Learning Components:
            MLModel.CreatePredictionEngine();
            GroundTruth.CreateGroundTruthLookup();

            // Get the Machine Learning Warmed Up:
            MLModel.Predict("https://firebasestorage.googleapis.com/v0/b/agricultureai-15ce0.appspot.com/o/DSC00025.JPG?alt=media");
        }