コード例 #1
0
        public void LogisticRegression_Test_iterations_20_learningrate_015()
        {
            var         desc = loadMetaData();
            LearningApi api  = new LearningApi(desc);

            //Real dataset must be defined as object type, because data can be numeric, binary and classification
            api.UseActionModule <object[][], object[][]>((input, ctx) =>
            {
                return(loadRealDataSample());
            });

            // Use mapper for data, which will extract (map) required columns
            api.UseDefaultDataMapper();

            api.UseMinMaxNormalizer();

            //run logistic regression for 10 iteration with learningRate=0.15
            api.UseLogisticRegression(0.15, 20);

            api.Run();

            IScore score = api.GetScore();

            //Errors during each iteration
            Assert.Equal(Math.Round(score.Errors[0], 5), 0.24236);
            Assert.Equal(Math.Round(score.Errors[1], 5), 0.23707);
            Assert.Equal(Math.Round(score.Errors[2], 5), 0.23358);
            Assert.Equal(Math.Round(score.Errors[3], 5), 0.23001);
            Assert.Equal(Math.Round(score.Errors[4], 5), 0.22806);
            Assert.Equal(Math.Round(score.Errors[5], 5), 0.22506);
            Assert.Equal(Math.Round(score.Errors[6], 5), 0.22409);
            Assert.Equal(Math.Round(score.Errors[7], 5), 0.22134);
            Assert.Equal(Math.Round(score.Errors[8], 5), 0.22105);
            Assert.Equal(Math.Round(score.Errors[9], 5), 0.21840);
            Assert.Equal(Math.Round(score.Errors[10], 5), 0.21857);
            Assert.Equal(Math.Round(score.Errors[11], 5), 0.21595);
            Assert.Equal(Math.Round(score.Errors[12], 5), 0.21640);
            Assert.Equal(Math.Round(score.Errors[13], 5), 0.21381);
            Assert.Equal(Math.Round(score.Errors[14], 5), 0.21439);
            Assert.Equal(Math.Round(score.Errors[15], 5), 0.21189);
            Assert.Equal(Math.Round(score.Errors[16], 5), 0.21251);
            Assert.Equal(Math.Round(score.Errors[17], 5), 0.21015);
            Assert.Equal(Math.Round(score.Errors[18], 5), 0.21076);
            Assert.Equal(Math.Round(score.Errors[19], 5), 0.20860);


            //LG Model Best Found model in 20 iteration
            Assert.Equal(Math.Round(score.Weights[0], 5), 0.28363);
            Assert.Equal(Math.Round(score.Weights[1], 5), 0.37424);
            Assert.Equal(Math.Round(score.Weights[2], 5), 1.41890);
            Assert.Equal(Math.Round(score.Weights[3], 5), 1.01207);
            Assert.Equal(Math.Round(score.Weights[4], 5), -0.33841);
            Assert.Equal(Math.Round(score.Weights[5], 5), -0.33841);
            Assert.Equal(Math.Round(score.Weights[6], 5), -1.62489);
        }
コード例 #2
0
        public void LogisticRegression_Test_Real_Example()
        {
            string m_binary_data_path = @"SampleData\binary\admit_binary.csv";

            var binary_path = System.IO.Path.Combine(Directory.GetCurrentDirectory(), m_binary_data_path);

            LearningApi api = new LearningApi(loadMetaData1());

            api.UseCsvDataProvider(binary_path, ',', false, 1);

            // Use mapper for data, which will extract (map) required columns
            api.UseDefaultDataMapper();

            api.UseMinMaxNormalizer();

            //run logistic regression for 10 iteration with learningRate=0.15
            api.UseLogisticRegression(0.00012, 200);


            var score = api.Run();

            ///**************PREDICTION AFTER MODEL IS CREATED*********////
            /////define data for testing (prediction)
            LearningApi apiPrediction = new LearningApi(loadMetaData1());

            //Real dataset must be defined as object type, because data can be numeric, binary and classification
            apiPrediction.UseActionModule <object[][], object[][]>((input, ctx) =>
            {
                var data = new object[5][]
                {
                    new object[] { 660, 3.88, 2, 1 },
                    new object[] { 580, 3.36, 2, 0 },
                    new object[] { 640, 3.17, 2, 0 },
                    new object[] { 640, 3.51, 2, 0 },
                    new object[] { 800, 3.05, 2, 1 },
                };
                return(data);
            });

            // Use mapper for data, which will extract (map) required columns
            apiPrediction.UseDefaultDataMapper();
            apiPrediction.UseMinMaxNormalizer();
            var testData = apiPrediction.Run();

            //use previous trained model
            var result = api.Algorithm.Predict(testData as double[][], api.Context) as LogisticRegressionResult;

            //
            Assert.Equal(Math.Round(result.PredictedValues[0], 0), 0);
            Assert.Equal(Math.Round(result.PredictedValues[1], 0), 0);
            Assert.Equal(Math.Round(result.PredictedValues[2], 0), 0);
            Assert.Equal(Math.Round(result.PredictedValues[3], 0), 0);
            Assert.Equal(Math.Round(result.PredictedValues[3], 0), 0);
        }
コード例 #3
0
        public void LogisticsRegression_Test_iterations_10_learningrate_013()
        {
            var         desc = loadMetaData();
            LearningApi api  = new LearningApi(desc);

            //Real dataset must be defined as object type, because data can be numeric, binary and classification
            api.UseActionModule <object[][], object[][]>((input, ctx) =>
            {
                return(loadRealDataSample());
            });

            // Use mapper for data, which will extract (map) required columns
            api.UseDefaultDataMapper();

            api.UseMinMaxNormalizer();

            //run logistic regression for 10 iterations with learningRate=0.13
            api.UseLogisticRegression(0.13, 10);

            api.Run();

            IScore score = api.GetScore();

            //Errors during each iteration. IF the learningRate is suitable erros is descrising for every next iteration
            Assert.Equal(Math.Round(score.Errors[0], 5), 0.24278);
            Assert.Equal(Math.Round(score.Errors[1], 5), 0.23749);
            Assert.Equal(Math.Round(score.Errors[2], 5), 0.23359);
            Assert.Equal(Math.Round(score.Errors[3], 5), 0.23010);
            Assert.Equal(Math.Round(score.Errors[4], 5), 0.22740);
            Assert.Equal(Math.Round(score.Errors[5], 5), 0.22476);
            Assert.Equal(Math.Round(score.Errors[6], 5), 0.22271);
            Assert.Equal(Math.Round(score.Errors[7], 5), 0.22065);
            Assert.Equal(Math.Round(score.Errors[8], 5), 0.21902);
            Assert.Equal(Math.Round(score.Errors[9], 5), 0.21739);

            //LG Model Best Found model in 10 iteration
            Assert.Equal(Math.Round(score.Weights[0], 5), 0.06494);
            Assert.Equal(Math.Round(score.Weights[1], 5), 0.21584);
            Assert.Equal(Math.Round(score.Weights[2], 5), 0.89901);
            Assert.Equal(Math.Round(score.Weights[3], 5), 0.51497);
            Assert.Equal(Math.Round(score.Weights[4], 5), -0.30213);
            Assert.Equal(Math.Round(score.Weights[5], 5), -0.30213);
            Assert.Equal(Math.Round(score.Weights[6], 5), -0.85624);
        }
コード例 #4
0
        public void LogisticsRegression_Test_iterations_10_learningrate_013()
        {
            var         desc = loadMetaData();
            LearningApi api  = new LearningApi(desc);

            //Real dataset must be defined as object type, because data can be numeric, binary and classification
            api.UseActionModule <object[][], object[][]>((input, ctx) =>
            {
                return(loadRealDataSample());
            });

            // Use mapper for data, which will extract (map) required columns
            api.UseDefaultDataMapper();

            api.UseMinMaxNormalizer();

            //run logistic regression for 10 iterations with learningRate=0.13
            api.UseLogisticRegression(0.13, 10);

            api.Run();

            LogisticRegressionScore score = api.GetScore() as LogisticRegressionScore;

            //Errors during each iteration. IF the learningRate is suitable errors is describing for every next iteration
            Assert.Equal(Math.Round(score.Errors[0], 5), 0.24278);
            Assert.Equal(Math.Round(score.Errors[1], 5), 0.23749);
            Assert.Equal(Math.Round(score.Errors[2], 5), 0.23359);
            Assert.Equal(Math.Round(score.Errors[3], 5), 0.23010);
            Assert.Equal(Math.Round(score.Errors[4], 5), 0.22740);
            Assert.Equal(Math.Round(score.Errors[5], 5), 0.22476);
            Assert.Equal(Math.Round(score.Errors[6], 5), 0.22271);
            Assert.Equal(Math.Round(score.Errors[7], 5), 0.22065);
            Assert.Equal(Math.Round(score.Errors[8], 5), 0.21902);
            Assert.Equal(Math.Round(score.Errors[9], 5), 0.21739);

            //LG Model Best Found model in 10 iteration
            Assert.Equal(Math.Round(score.Weights[0], 5), 0.06494);
            Assert.Equal(Math.Round(score.Weights[1], 5), 0.21584);
            Assert.Equal(Math.Round(score.Weights[2], 5), 0.89901);
            Assert.Equal(Math.Round(score.Weights[3], 5), 0.51497);
            Assert.Equal(Math.Round(score.Weights[4], 5), -0.30213);
            Assert.Equal(Math.Round(score.Weights[5], 5), -0.30213);
            Assert.Equal(Math.Round(score.Weights[6], 5), -0.85624);


            //define data for testing (prediction)
            LearningApi apiPrediction = new LearningApi(desc);

            //Real dataset must be defined as object type, because data can be numeric, binary and classification
            apiPrediction.UseActionModule <object[][], object[][]>((input, ctx) =>
            {
                var data = new object[4][]
                {
                    new object[] { 0.202, "blue", "male", 13, "yes" },
                    new object[] { 0.447, "green", "female", 37, "no" },
                    new object[] { 0.120, "red", "male", "21", "yes" },
                    new object[] { 0.313, "green", "male", 22, "yes" },
                };
                return(data);
            });

            // Use mapper for data, which will extract (map) required columns
            apiPrediction.UseDefaultDataMapper();
            var testData = apiPrediction.Run();

            //use previous trained model
            var result = api.Algorithm.Predict(testData as double[][], api.Context) as LogisticRegressionResult;

            Assert.Equal(Math.Round(result.PredictedValues[0], 5), 1E-05);
            Assert.Equal(Math.Round(result.PredictedValues[1], 5), 0);
            Assert.Equal(Math.Round(result.PredictedValues[2], 5), 0);
            Assert.Equal(Math.Round(result.PredictedValues[3], 5), 0);
        }