public static Functional GetBilibiliModelV1(int width, int height, int labelNameLenght) { tf.enable_eager_execution(); // 宽*高*通道数 var inputss = keras.Input((height, width, 3)); var inputs = layers.Conv2D(32, (3, 3), activation: keras.activations.Relu).Apply(inputss); inputs = layers.MaxPooling2D((2, 2)).Apply(inputs); inputs = layers.Conv2D(64, (3, 3), activation: keras.activations.Relu).Apply(inputs); inputs = layers.MaxPooling2D((2, 2)).Apply(inputs); inputs = layers.Conv2D(64, (3, 3), activation: keras.activations.Relu).Apply(inputs); inputs = layers.MaxPooling2D((2, 2)).Apply(inputs); inputs = layers.Conv2D(64, (3, 3), activation: keras.activations.Relu).Apply(inputs); inputs = layers.MaxPooling2D((1, 1)).Apply(inputs); inputs = layers.Conv2D(64, (2, 2), activation: keras.activations.Relu).Apply(inputs); inputs = layers.MaxPooling2D((1, 1)).Apply(inputs); inputs = layers.Flatten().Apply(inputs); inputs = layers.Dense(64, keras.activations.Relu).Apply(inputs); var outputs = layers.Dense(labelNameLenght).Apply(inputs); var model = keras.Model(inputss, outputs, "bilibili"); model.summary(); model.compile(loss: keras.losses.SparseCategoricalCrossentropy(from_logits: true), optimizer: keras.optimizers.Adam(), metrics: new[] { "accuracy" }); return(model); }
static void Main(string[] args) { //MemoryLeakTest.Test(); //return; //var x = new string[] { "", "", "", "", "", "" }; //var y = x[1..]; Console.WriteLine("Hello World!"); var b = new bilibili_cnn(); var config = b.ReadDataSets(); Console.WriteLine(JsonConvert.SerializeObject(config, Formatting.Indented)); Console.WriteLine("Image.Shape={0}", config.Images.Shape); Console.WriteLine("Label.Shape={0}", config.Lables.Shape); tf.enable_eager_execution(); // 宽*高*通道数 var inputss = keras.Input((config.Height, config.Width, 3)); var inputs = layers.Conv2D(32, (3, 3), activation: keras.activations.Relu).Apply(inputss); inputs = layers.MaxPooling2D((2, 2)).Apply(inputs); inputs = layers.Conv2D(64, (3, 3), activation: keras.activations.Relu).Apply(inputs); inputs = layers.MaxPooling2D((2, 2)).Apply(inputs); inputs = layers.Conv2D(64, (3, 3), activation: keras.activations.Relu).Apply(inputs); inputs = layers.MaxPooling2D((2, 2)).Apply(inputs); inputs = layers.Conv2D(64, (3, 3), activation: keras.activations.Relu).Apply(inputs); inputs = layers.Flatten().Apply(inputs); Console.WriteLine(inputs.shape); inputs = layers.Dense(64, keras.activations.Relu).Apply(inputs); var outputs = layers.Dense(config.LabNames.Length).Apply(inputs); var model = keras.Model(inputss, outputs, "bilibili"); model.summary(); model.compile(loss: keras.losses.SparseCategoricalCrossentropy(from_logits: true), optimizer: keras.optimizers.RMSprop(), metrics: new[] { "accuracy" }); model.fit(config.Images, config.Lables, epochs: 40); }
public void Run() { // tf.debugging.set_log_device_placement(true); tf.Context.Config.GpuOptions.AllowGrowth = true; int num = 50, width = 64, height = 64; // if width = 128, height = 128, the exception occurs faster var bytes = new byte[num * width * height * 3]; var inputImages = np.array(bytes) / 255.0f; // inputImages = inputImages.reshape((num, height, width, 3)); bytes = new byte[num]; var outLables = np.array(bytes); Console.WriteLine("Image.Shape={0}", inputImages.dims); Console.WriteLine("Label.Shape={0}", outLables.dims); tf.enable_eager_execution(); var inputs = keras.Input((height, width, 3)); var layer = layers.Conv2D(32, (3, 3), activation: keras.activations.Relu).Apply(inputs); layer = layers.MaxPooling2D((2, 2)).Apply(layer); layer = layers.Flatten().Apply(layer); var outputs = layers.Dense(10).Apply(layer); var model = keras.Model(inputs, outputs, "gpuleak"); model.summary(); model.compile(loss: keras.losses.SparseCategoricalCrossentropy(from_logits: true), optimizer: keras.optimizers.RMSprop(), metrics: new[] { "accuracy" }); model.fit(inputImages, outLables, batch_size: 32, epochs: 200); keras.backend.clear_session(); }
public void Main() { // Step-1. Prepare Data (x_train, y_train, x_test, y_test) = keras.datasets.mnist.load_data(); x_train = x_train.reshape(60000, 28, 28, 1) / 255f; x_test = x_test.reshape(10000, 28, 28, 1) / 255f; // Step-2. Build CNN Model with Keras Functional // input layer var inputs = keras.Input(shape: (28, 28, 1)); // 1st convolution layer var outputs = layers.Conv2D(32, kernel_size: 5, activation: keras.activations.Relu).Apply(inputs); // 2nd maxpooling layer outputs = layers.MaxPooling2D(2, strides: 2).Apply(outputs); // 3nd convolution layer outputs = layers.Conv2D(64, kernel_size: 3, activation: keras.activations.Relu).Apply(outputs); // 4nd maxpooling layer outputs = layers.MaxPooling2D(2, strides: 2).Apply(outputs); // 5nd flatten layer outputs = layers.Flatten().Apply(outputs); // 6nd dense layer outputs = layers.Dense(1024).Apply(outputs); // 7nd dropout layer outputs = layers.Dropout(rate: 0.5f).Apply(outputs); // output layer outputs = layers.Dense(10).Apply(outputs); // build keras model model = keras.Model(inputs, outputs, name: "mnist_model"); // show model summary model.summary(); // compile keras model into tensorflow's static graph model.compile(loss: keras.losses.SparseCategoricalCrossentropy(from_logits: true), optimizer: keras.optimizers.Adam(learning_rate: 0.001f), metrics: new[] { "accuracy" }); // Step-3. Train Model // train model by feeding data and labels. model.fit(x_train, y_train, batch_size: 64, epochs: 2, validation_split: 0.2f); // evluate the model model.evaluate(x_test, y_test, verbose: 2); }
public static void Test() { int num = 50, width = 128, height = 128; var bytes = new byte[num * width * height * 3]; var inputImages = np.array(bytes) / 255.0f; inputImages = inputImages.reshape(num, height, width, 3); bytes = new byte[num]; var outLables = np.array(bytes); Console.WriteLine("Image.Shape={0}", inputImages.Shape); Console.WriteLine("Label.Shape={0}", outLables.Shape); tf.enable_eager_execution(); // 宽*高*通道数 var inputss = keras.Input((height, width, 3)); var inputs = layers.Conv2D(32, (3, 3), activation: keras.activations.Relu).Apply(inputss); inputs = layers.MaxPooling2D((2, 2)).Apply(inputs); inputs = layers.Flatten().Apply(inputs); var outputs = layers.Dense(10).Apply(inputs); var model = keras.Model(inputss, outputs, "gpuleak"); model.summary(); model.compile(loss: keras.losses.SparseCategoricalCrossentropy(from_logits: true), optimizer: keras.optimizers.RMSprop(), metrics: new[] { "accuracy" }); model.fit(inputImages, outLables, epochs: 200); }