public void TSSetUp() { int[] layers = new int[] { 1024, //32x32 input image 4704, //6 @ 28x28 convolution 1176, //6 @ 14x14 subsampling 1600, //16 @ 10x10 convolution 400, //16 @ 5x5 subsampling 120, // 120x1x1 convolution! 84, //full 10 //full }; LayerConnector[] map = new LayerConnector[] { new ConvolutionAuto(5, 6, 1, 4), new SubSampling(6), new Convolution(5, 16, 6, 4, GetSchema()), new SubSampling(16), new ConvolutionAuto(5, 120, 16, 0), new FullLayerConnector(), new FullLayerConnector() }; ConvolutionalTopology topology = new ConvolutionalTopology(layers, 1, map); ConvolutionalGenerator generator = new ConvolutionalGenerator(); Network = generator.Create(topology); }
void BuildNetwork() { int[] layers = new int[] { 841, 1014, 1250, 100, 10 }; LayerConnector[] map = new LayerConnector[] { new ConvolutionAuto(5, 6, 1, 3), new ConvolutionAuto(5, 50, 6, 1), new FullLayerConnector(), new FullLayerConnector() }; ConvolutionalTopology topology = new ConvolutionalTopology(layers, 1, map, new HyperbolicTangent()); ConvolutionalGenerator generator = new ConvolutionalGenerator(); Network = generator.Create(topology); Network.LearnFactor = 0.0005; Network.Reset(-0.1, 0.1); }
public void ConvolutionSerialization() { int[] layers = new int[] { 1024, //32x32 input image 4704, //6 @ 28x28 convolution 1176, //6 @ 14x14 subsampling 1600, //16 @ 10x10 convolution 400, //16 @ 5x5 subsampling 120, // 120x1x1 convolution! 84, //full 10 //full }; LayerConnector[] map = new LayerConnector[] { new ConvolutionAuto(5, 6, 1, 4), new SubSampling(6), new ConvolutionAuto(5, 16, 6, 4), new SubSampling(16), new ConvolutionAuto(5, 120, 16, 0), new FullLayerConnector(), new FullLayerConnector() }; ConvolutionalTopology topology = new ConvolutionalTopology(layers, 1, map); ConvolutionalGenerator generator = new ConvolutionalGenerator(); ConvolutionalNetwork network = generator.Create(topology); ConvolutionalXMLSerializer serializer = new ConvolutionalXMLSerializer(); XDocument doc = serializer.Serialize(network); ConvolutionalNetwork network2 = serializer.Deserialize(doc); Assert.AreEqual(network2.Structure.Elements.Length, network.Structure.Elements.Length); Assert.AreEqual(network2.Structure.Elements[3000].GetDescription(), network.Structure.Elements[3000].GetDescription()); Assert.AreEqual(network2.Structure.Elements[0].Next[0].Weight.Value, network.Structure.Elements[0].Next[0].Weight.Value); Assert.AreEqual(((NeuronBase)network2.Structure.Elements[4000]).Previous[0].Weight.Value, ((NeuronBase)network.Structure.Elements[4000]).Previous[0].Weight.Value); Assert.AreEqual(((NeuronBase)network2.Structure.Elements[3004]).Func.GetType(), ((NeuronBase)network.Structure.Elements[3004]).Func.GetType()); Weight w1 = network2.Structure.Layers[0][0].Next[0].Weight; Weight w2 = network2.Structure.Layers[0][1].Next.Select(x => x.Weight).FirstOrDefault(x => x == w1); Assert.IsNotNull(w1); Assert.IsTrue(w1 == w2); Link[] l1 = network2.Structure.Layers[1]; int c = GetConnectionsCount(l1, false, true); int w = GetWeightsCount(l1, false, true); Assert.AreEqual(c, 122304); Assert.AreEqual(w, 156); for (int i = 0; i < network.Structure.Layers.Length; i++) { for (int j = 0; j < network.Structure.Layers[i].Length; j++) { Connection[] n1 = network.Structure.Layers[i][j].Next; if (n1 != null) { Connection[] n2 = network2.Structure.Layers[i][j].Next; Assert.IsNotNull(n2); for (int z = 0; z < n1.Length; z++) { Assert.AreEqual(n1[z].Weight.Value, n2[z].Weight.Value); Assert.AreEqual(n1[z].Weight.GetType(), n2[z].Weight.GetType()); } } if (network.Structure.Layers[i][j] is NeuronBase) { Connection[] p1 = ((NeuronBase)network.Structure.Layers[i][j]).Previous; if (p1 != null) { Connection[] p2 = ((NeuronBase)network2.Structure.Layers[i][j]).Previous; Assert.IsNotNull(p2); for (int z = 0; z < p1.Length; z++) { Assert.AreEqual(p1[z].Weight.Value, p2[z].Weight.Value); Assert.AreEqual(p1[z].Weight.GetType(), p2[z].Weight.GetType()); } } } } } }