public static void Main() { modshogun.init_shogun_with_defaults(); double width = 0.8; int C = 1; double epsilon = 1e-5; double tube_epsilon = 1e-2; double[,] traindata_real = Load.load_numbers("../data/fm_train_real.dat"); double[,] testdata_real = Load.load_numbers("../data/fm_test_real.dat"); double[] trainlab = Load.load_labels("../data/label_train_twoclass.dat"); RealFeatures feats_train = new RealFeatures(traindata_real); RealFeatures feats_test = new RealFeatures(testdata_real); GaussianKernel kernel = new GaussianKernel(feats_train, feats_train, width); RegressionLabels labels = new RegressionLabels(trainlab); LibSVR svr = new LibSVR(C, epsilon, kernel, labels); svr.set_tube_epsilon(tube_epsilon); svr.train(); kernel.init(feats_train, feats_test); double[] out_labels = LabelsFactory.to_regression(svr.apply()).get_labels(); foreach (double item in out_labels) { Console.Write(out_labels); } modshogun.exit_shogun(); }
public static void Main() { modshogun.init_shogun_with_defaults(); double width = 2.1; double epsilon = 1e-5; double C = 1.0; double[,] traindata_real = Load.load_numbers("../data/fm_train_real.dat"); double[,] testdata_real = Load.load_numbers("../data/fm_test_real.dat"); double[] trainlab = Load.load_labels("../data/label_train_twoclass.dat"); RealFeatures feats_train = new RealFeatures(); feats_train.set_feature_matrix(traindata_real); RealFeatures feats_test = new RealFeatures(); feats_test.set_feature_matrix(testdata_real); GaussianKernel kernel = new GaussianKernel(feats_train, feats_train, width); BinaryLabels labels = new BinaryLabels(trainlab); GPBTSVM svm = new GPBTSVM(C, kernel, labels); svm.set_epsilon(epsilon); svm.train(); kernel.init(feats_train, feats_test); double[] out_labels = LabelsFactory.to_binary(svm.apply()).get_labels(); foreach (double item in out_labels) { Console.Write(item); } }
public static void Main() { modshogun.init_shogun_with_defaults(); double learn_rate = 1.0; int max_iter = 1000; double[,] traindata_real = Load.load_numbers("../data/fm_train_real.dat"); double[,] testdata_real = Load.load_numbers("../data/fm_test_real.dat"); double[] trainlab = Load.load_labels("../data/label_train_twoclass.dat"); RealFeatures feats_train = new RealFeatures(); feats_train.set_feature_matrix(traindata_real); RealFeatures feats_test = new RealFeatures(); feats_test.set_feature_matrix(testdata_real); BinaryLabels labels = new BinaryLabels(trainlab); AveragedPerceptron perceptron = new AveragedPerceptron(feats_train, labels); perceptron.set_learn_rate(learn_rate); perceptron.set_max_iter(max_iter); perceptron.train(); perceptron.set_features(feats_test); double[] out_labels = LabelsFactory.to_binary(perceptron.apply()).get_labels(); foreach (double item in out_labels) { Console.Write(item); } }
public static void Main() { modshogun.init_shogun_with_defaults(); double[,] traindata_real = Load.load_numbers("../data/fm_train_real.dat"); double[,] testdata_real = Load.load_numbers("../data/fm_test_real.dat"); double[] trainlab = Load.load_labels("../data/label_train_multiclass.dat"); RealFeatures feats_train = new RealFeatures(); feats_train.set_feature_matrix(traindata_real); RealFeatures feats_test = new RealFeatures(); feats_test.set_feature_matrix(testdata_real); MulticlassLabels labels = new MulticlassLabels(trainlab); GaussianNaiveBayes gnb = new GaussianNaiveBayes(feats_train, labels); gnb.train(); double[] out_labels = LabelsFactory.to_multiclass(gnb.apply(feats_test)).get_labels(); foreach (double item in out_labels) { Console.Write(item); } }
public static void Main() { modshogun.init_shogun_with_defaults(); int k = 3; double[,] traindata_real = Load.load_numbers("../data/fm_train_real.dat"); double[,] testdata_real = Load.load_numbers("../data/fm_test_real.dat"); double[] trainlab = Load.load_labels("../data/label_train_multiclass.dat"); RealFeatures feats_train = new RealFeatures(traindata_real); RealFeatures feats_test = new RealFeatures(testdata_real); EuclideanDistance distance = new EuclideanDistance(feats_train, feats_train); MulticlassLabels labels = new MulticlassLabels(trainlab); KNN knn = new KNN(k, distance, labels); knn.train(); double[] out_labels = LabelsFactory.to_multiclass(knn.apply(feats_test)).get_labels(); foreach (double item in out_labels) { Console.Write(item); } }
public static void Main() { modshogun.init_shogun_with_defaults(); double width = 0.8; double tau = 1e-6; double[,] traindata_real = Load.load_numbers("../data/fm_train_real.dat"); double[,] testdata_real = Load.load_numbers("../data/fm_test_real.dat"); double[] trainlab = Load.load_labels("../data/label_train_twoclass.dat"); RealFeatures feats_train = new RealFeatures(traindata_real); RealFeatures feats_test = new RealFeatures(testdata_real); GaussianKernel kernel = new GaussianKernel(feats_train, feats_train, width); RegressionLabels labels = new RegressionLabels(trainlab); KernelRidgeRegression krr = new KernelRidgeRegression(tau, kernel, labels); krr.train(feats_train); kernel.init(feats_train, feats_test); double[] out_labels = LabelsFactory.to_regression(krr.apply()).get_labels(); foreach (double item in out_labels) { Console.Write(item); } }
public static void Main() { modshogun.init_shogun_with_defaults(); double C = 0.9; double epsilon = 1e-3; Math.init_random(17); double[,] traindata_real = Load.load_numbers("../data/fm_train_real.dat"); double[,] testdata_real = Load.load_numbers("../data/fm_test_real.dat"); double[] trainlab = Load.load_labels("../data/label_train_twoclass.dat"); RealFeatures feats_train = new RealFeatures(); feats_train.set_feature_matrix(traindata_real); RealFeatures feats_test = new RealFeatures(); feats_test.set_feature_matrix(testdata_real); BinaryLabels labels = new BinaryLabels(trainlab); LibLinear svm = new LibLinear(C, feats_train, labels); svm.set_liblinear_solver_type(LIBLINEAR_SOLVER_TYPE.L2R_L2LOSS_SVC_DUAL); svm.set_epsilon(epsilon); svm.set_bias_enabled(true); svm.train(); svm.set_features(feats_test); double[] out_labels = LabelsFactory.to_binary(svm.apply()).get_labels(); foreach (double item in out_labels) { Console.Write(item); } }
public static void Main() { modshogun.init_shogun_with_defaults(); double width = 2.1; double epsilon = 1e-5; double C = 1.0; int mkl_norm = 2; double[,] traindata_real = Load.load_numbers("../data/fm_train_real.dat"); double[,] testdata_real = Load.load_numbers("../data/fm_test_real.dat"); double[] trainlab = Load.load_labels("../data/label_train_multiclass.dat"); CombinedKernel kernel = new CombinedKernel(); CombinedFeatures feats_train = new CombinedFeatures(); CombinedFeatures feats_test = new CombinedFeatures(); RealFeatures subkfeats1_train = new RealFeatures(traindata_real); RealFeatures subkfeats1_test = new RealFeatures(testdata_real); GaussianKernel subkernel = new GaussianKernel(10, width); feats_train.append_feature_obj(subkfeats1_train); feats_test.append_feature_obj(subkfeats1_test); kernel.append_kernel(subkernel); RealFeatures subkfeats2_train = new RealFeatures(traindata_real); RealFeatures subkfeats2_test = new RealFeatures(testdata_real); LinearKernel subkernel2 = new LinearKernel(); feats_train.append_feature_obj(subkfeats2_train); feats_test.append_feature_obj(subkfeats2_test); kernel.append_kernel(subkernel2); RealFeatures subkfeats3_train = new RealFeatures(traindata_real); RealFeatures subkfeats3_test = new RealFeatures(testdata_real); PolyKernel subkernel3 = new PolyKernel(10, 2); feats_train.append_feature_obj(subkfeats3_train); feats_test.append_feature_obj(subkfeats3_test); kernel.append_kernel(subkernel3); kernel.init(feats_train, feats_train); MulticlassLabels labels = new MulticlassLabels(trainlab); MKLMulticlass mkl = new MKLMulticlass(C, kernel, labels); mkl.set_epsilon(epsilon); mkl.set_mkl_epsilon(epsilon); mkl.set_mkl_norm(mkl_norm); mkl.train(); kernel.init(feats_train, feats_test); double[] outMatrix = LabelsFactory.to_multiclass(mkl.apply()).get_labels(); }
/// <summary> /// Makes the labels once the boxes in the Shipment are populated. /// </summary> public void MakeBoxLabels() { if (Shipment.Boxes != null) { //set properties to label factory LabelsFactory.ShipmentBoxes = Shipment.Boxes; LabelsFactory.AmzWarehouse = Shipment.FullfillmentShipTo; LabelsFactory.ShipFromAddress = Shipment.CompanyShipFrom; LabelsFactory.BoxCount = Shipment.Boxes.Count; //create the labels after the necessary items have been passed into the constructor LabelsFactory.CreateLabels(); } }
public static void Main() { modshogun.init_shogun_with_defaults(); int gamma = 3; double[,] traindata_real = Load.load_numbers("../data/fm_train_real.dat"); double[,] testdata_real = Load.load_numbers("../data/fm_test_real.dat"); double[] trainlab = Load.load_labels("../data/label_train_twoclass.dat"); RealFeatures feats_train = new RealFeatures(); feats_train.set_feature_matrix(traindata_real); RealFeatures feats_test = new RealFeatures(); feats_test.set_feature_matrix(testdata_real); BinaryLabels labels = new BinaryLabels(trainlab); LDA lda = new LDA(gamma, feats_train, labels); lda.train(); Console.WriteLine(lda.get_bias()); //Console.WriteLine(lda.get_w().toString()); foreach (double item in lda.get_w()) { Console.Write(item); } lda.set_features(feats_test); double[] out_labels = LabelsFactory.to_binary(lda.apply()).get_labels(); foreach (double item in out_labels) { Console.Write(item); } modshogun.exit_shogun(); }
public static void Main() { modshogun.init_shogun_with_defaults(); bool reverse = false; int order = 3; int gap = 0; String[] fm_train_dna = Load.load_dna("../data/fm_train_dna.dat"); String[] fm_test_dna = Load.load_dna("../data/fm_test_dna.dat"); StringCharFeatures charfeat = new StringCharFeatures(fm_train_dna, EAlphabet.DNA); StringWordFeatures feats_train = new StringWordFeatures(charfeat.get_alphabet()); feats_train.obtain_from_char(charfeat, order - 1, order, gap, false); charfeat = new StringCharFeatures(fm_test_dna, EAlphabet.DNA); StringWordFeatures feats_test = new StringWordFeatures(charfeat.get_alphabet()); feats_test.obtain_from_char(charfeat, order - 1, order, gap, false); BinaryLabels labels = new BinaryLabels(Load.load_labels("../data/label_train_dna.dat")); PluginEstimate pie = new PluginEstimate(); pie.set_labels(labels); pie.set_features(feats_train); pie.train(); SalzbergWordStringKernel kernel = new SalzbergWordStringKernel(feats_train, feats_train, pie, labels); double[,] km_train = kernel.get_kernel_matrix(); kernel.init(feats_train, feats_test); pie.set_features(feats_test); LabelsFactory.to_binary(pie.apply()).get_labels(); double[,] km_test = kernel.get_kernel_matrix(); modshogun.exit_shogun(); }
public static void Main() { modshogun.init_shogun_with_defaults(); double width = 2.1; double epsilon = 1e-5; double C = 1.0; double[,] traindata_real = Load.load_numbers("../data/fm_train_real.dat"); double[,] testdata_real = Load.load_numbers("../data/fm_test_real.dat"); double[] trainlab = Load.load_labels("../data/label_train_multiclass.dat"); RealFeatures feats_train = new RealFeatures(); feats_train.set_feature_matrix(traindata_real); RealFeatures feats_test = new RealFeatures(); feats_test.set_feature_matrix(testdata_real); GaussianKernel kernel = new GaussianKernel(feats_train, feats_train, width); MulticlassLabels labels = new MulticlassLabels(trainlab); LaRank svm = new LaRank(C, kernel, labels); svm.set_batch_mode(false); svm.set_epsilon(epsilon); svm.train(); double[] out_labels = LabelsFactory.to_multiclass(svm.apply(feats_train)).get_labels(); foreach (double item in out_labels) { Console.Write(item); } modshogun.exit_shogun(); }
public static void Main() { modshogun.init_shogun_with_defaults(); int num = 1000; double dist = 1.0; double width = 2.1; double C = 1.0; Random RandomNumber = new Random(); double[,] traindata_real = new double[2, num * 2]; for (int i = 0; i < num; i++) { traindata_real[0, i] = RandomNumber.NextDouble() - dist; traindata_real[0, i + num] = RandomNumber.NextDouble() + dist; traindata_real[1, i] = RandomNumber.NextDouble() - dist; traindata_real[1, i + num] = RandomNumber.NextDouble() + dist; } double[,] testdata_real = new double[2, num * 2]; for (int i = 0; i < num; i++) { testdata_real[0, i] = RandomNumber.NextDouble() - dist; testdata_real[0, i + num] = RandomNumber.NextDouble() + dist; testdata_real[1, i] = RandomNumber.NextDouble() - dist; testdata_real[1, i + num] = RandomNumber.NextDouble() + dist; } double[] trainlab = new double[num * 2]; for (int i = 0; i < num; i++) { trainlab[i] = -1; trainlab[i + num] = 1; } double[] testlab = new double[num * 2]; for (int i = 0; i < num; i++) { testlab[i] = -1; testlab[i + num] = 1; } RealFeatures feats_train = new RealFeatures(traindata_real); RealFeatures feats_test = new RealFeatures(testdata_real); GaussianKernel kernel = new GaussianKernel(feats_train, feats_train, width); BinaryLabels labels = new BinaryLabels(trainlab); LibSVM svm = new LibSVM(C, kernel, labels); svm.train(); double[] result = LabelsFactory.to_binary(svm.apply(feats_test)).get_labels(); int err_num = 0; for (int i = 0; i < num; i++) { if (result[i] > 0) { err_num += 1; } if (result[i + num] < 0) { err_num += 1; } } double testerr = err_num / (2 * num); Console.WriteLine(testerr); modshogun.exit_shogun(); }