public void RunJobShopScheduling(String solverType) { Solver solver = new Solver(solverType); if (solver == null) { Console.WriteLine("JobShop failed to create a solver " + solverType); return; } // All tasks Dictionary <string, IntervalVar> allTasks = new Dictionary <string, IntervalVar>(); // Creates jobs for (int i = 0; i < allJobs.Count; i++) { for (int j = 0; j < machines.ElementAt(i).Count; j++) { IntervalVar oneTask = solver.MakeFixedDurationIntervalVar(0, horizon, processingTimes.ElementAt(i).ElementAt(j), false, "Job_" + i + "_" + j); allTasks.Add("Job_" + i + "_" + j, oneTask); } } // Create sequence variables and add disjuctive constraints List <SequenceVar> allSequences = new List <SequenceVar>(); foreach (var machine in allMachines) { List <IntervalVar> machinesJobs = new List <IntervalVar>(); for (int i = 0; i < allJobs.Count; i++) { for (int k = 0; k < machines.ElementAt(i).Count; k++) { if (machines.ElementAt(i).ElementAt(k) == machine) { machinesJobs.Add(allTasks["Job_" + i + "_" + k]); } } } DisjunctiveConstraint disj = solver.MakeDisjunctiveConstraint(machinesJobs.ToArray(), "machine " + machine); allSequences.Add(disj.SequenceVar()); solver.Add(disj); } // Add conjunctive constraints foreach (var job in allJobs) { for (int j = 0; j < machines.ElementAt(job).Count - 1; j++) { solver.Add(allTasks["Job_" + job + "_" + (j + 1)].StartsAfterEnd(allTasks["Job_" + job + "_" + j])); } } // Set the objective IntVar[] allEnds = new IntVar[jobsCount]; for (int i = 0; i < allJobs.Count; i++) { allEnds[i] = allTasks["Job_" + i + "_" + (machines.ElementAt(i).Count - 1)].EndExpr().Var(); } // Objective: minimize the makespan (maximum end times of all tasks) // of the problem. IntVar objectiveVar = solver.MakeMax(allEnds).Var(); OptimizeVar objectiveMonitor = solver.MakeMinimize(objectiveVar, 1); // Create search phases DecisionBuilder sequencePhase = solver.MakePhase(allSequences.ToArray(), Solver.SEQUENCE_DEFAULT); DecisionBuilder varsPhase = solver.MakePhase(objectiveVar, Solver.CHOOSE_FIRST_UNBOUND, Solver.ASSIGN_MIN_VALUE); // The main decision builder (ranks all tasks, then fixes the // objectiveVariable). DecisionBuilder mainPhase = solver.Compose(sequencePhase, varsPhase); SolutionCollector collector = solver.MakeLastSolutionCollector(); collector.Add(allSequences.ToArray()); collector.Add(objectiveVar); foreach (var i in allMachines) { SequenceVar sequence = allSequences.ElementAt(i); long sequenceCount = sequence.Size(); for (int j = 0; j < sequenceCount; j++) { IntervalVar t = sequence.Interval(j); collector.Add(t.StartExpr().Var()); collector.Add(t.EndExpr().Var()); } } // Search. bool solutionFound = solver.Solve(mainPhase, null, objectiveMonitor, null, collector); if (solutionFound) { //The index of the solution from the collector const int SOLUTION_INDEX = 0; Assignment solution = collector.Solution(SOLUTION_INDEX); string solLine = ""; string solLineTasks = ""; Console.WriteLine("Time Intervals for Tasks\n"); for (int m = 0; m < this.machinesCount; m++) { //Console.WriteLine("MachineCount: " + this.machinesCount); solLine = "Machine " + m + " :"; solLineTasks = "Machine " + m + ": "; SequenceVar seq = allSequences.ElementAt(m); int[] storedSequence = collector.ForwardSequence(SOLUTION_INDEX, seq); foreach (int taskIndex in storedSequence) { //Console.WriteLine("taskIndex: " + taskIndex); IntervalVar task = seq.Interval(taskIndex); solLineTasks += task.Name() + " "; //Console.WriteLine("Len: " + storedSequence.Length); } foreach (int taskIndex in storedSequence) { IntervalVar task = seq.Interval(taskIndex); string solTemp = "[" + collector.Value(0, task.StartExpr().Var()) + ","; solTemp += collector.Value(0, task.EndExpr().Var()) + "] "; solLine += solTemp; } //solLine += "\n"; solLineTasks += "\n"; //Console.WriteLine(solLineTasks); Console.WriteLine(solLine); } } else { Console.WriteLine("No solution found!"); } }
public void RunJobShopScheduling(String solverType) { Solver solver = new Solver(solverType); if (solver == null) { Console.WriteLine("JobShop failed to create a solver " + solverType); return; } // All tasks Dictionary <string, IntervalVar> allTasks = new Dictionary <string, IntervalVar>(); // Creates jobs for (int i = 0; i < allJobs.Count; i++) { for (int j = 0; j < machines.ElementAt(i).Count; j++) { IntervalVar oneTask = solver.MakeFixedDurationIntervalVar(0, horizon, processingTimes.ElementAt(i).ElementAt(j), false, "Job_" + i + "_" + j); //Console.WriteLine("Job_" + i + "_" + j); allTasks.Add("Job_" + i + "_" + j, oneTask); } } // Create sequence variables and add disjuctive constraints List <SequenceVar> allSequences = new List <SequenceVar>(); foreach (var machine in allMachines) { List <IntervalVar> machinesJobs = new List <IntervalVar>(); for (int i = 0; i < allJobs.Count; i++) { for (int k = 0; k < machines.ElementAt(i).Count; k++) { if (machines.ElementAt(i).ElementAt(k) == machine) { machinesJobs.Add(allTasks["Job_" + i + "_" + k]); } } } DisjunctiveConstraint disj = solver.MakeDisjunctiveConstraint(machinesJobs.ToArray(), "machine " + machine); allSequences.Add(disj.SequenceVar()); solver.Add(disj); } // Add conjunctive constraints foreach (var job in allJobs) { for (int j = 0; j < machines.ElementAt(job).Count - 1; j++) { solver.Add(allTasks["Job_" + job + "_" + (j + 1)].StartsAfterEnd(allTasks["Job_" + job + "_" + j])); } } // Set the objective IntVar[] allEnds = new IntVar[jobsCount]; for (int i = 0; i < allJobs.Count; i++) { allEnds[i] = allTasks["Job_" + i + "_" + (machines.ElementAt(i).Count - 1)].EndExpr().Var(); } // Objective: minimize the makespan (maximum end times of all tasks) // of the problem. IntVar objectiveVar = solver.MakeMax(allEnds).Var(); OptimizeVar objectiveMonitor = solver.MakeMinimize(objectiveVar, 1); // Create search phases DecisionBuilder sequencePhase = solver.MakePhase(allSequences.ToArray(), Solver.SEQUENCE_DEFAULT); DecisionBuilder varsPhase = solver.MakePhase(objectiveVar, Solver.CHOOSE_FIRST_UNBOUND, Solver.ASSIGN_MIN_VALUE); // The main decision builder (ranks all tasks, then fixes the // objectiveVariable). DecisionBuilder mainPhase = solver.Compose(sequencePhase, varsPhase); SolutionCollector collector = solver.MakeLastSolutionCollector(); collector.Add(allSequences.ToArray()); collector.Add(objectiveVar); foreach (var i in allMachines) { SequenceVar sequence = allSequences.ElementAt(i); long sequenceCount = sequence.Size(); for (int j = 0; j < sequenceCount; j++) { IntervalVar t = sequence.Interval(j); collector.Add(t.StartExpr().Var()); collector.Add(t.EndExpr().Var()); } } // Search. bool solutionFound = solver.Solve(mainPhase, null, objectiveMonitor, null, collector); if (solutionFound) { //The index of the solution from the collector const int SOLUTION_INDEX = 0; Assignment solution = collector.Solution(SOLUTION_INDEX); string solLine = ""; string solLineTasks = ""; Console.WriteLine("Time Intervals for Tasks\n"); List <List <TimeSpan> > tuplesSolution = new List <List <TimeSpan> >(); for (int m = 0; m < this.machinesCount; m++) { //Console.WriteLine("MachineCount: " + this.machinesCount); solLine = "Machine " + m + " :"; solLineTasks = "Machine " + m + ": "; SequenceVar seq = allSequences.ElementAt(m); int[] storedSequence = collector.ForwardSequence(SOLUTION_INDEX, seq); foreach (int taskIndex in storedSequence) { //Console.WriteLine("taskIndex: " + taskIndex); IntervalVar task = seq.Interval(taskIndex); solLineTasks += task.Name() + " "; //Console.WriteLine("Len: " + storedSequence.Length); } // First GreenTime //TimeSpan timeToAdd = tuplesSolution.First().Last(); TimeSpan timeEndBucket = this.bucketInfo.EndBucket; TimeSpan timeStartBucket = this.bucketInfo.StartBucket; int solutionSize = tuplesSolution.Count; bool isEnd = false; List <int> list_id = jobIds.ElementAt(m); // Adding GreenTime to Solution while (timeStartBucket.CompareTo(timeEndBucket) < 0) { foreach (int taskIndex in storedSequence) { IntervalVar task = seq.Interval(taskIndex); var startValue = TimeSpan.FromSeconds(collector.Value(0, task.StartExpr().Var())); var endValue = TimeSpan.FromSeconds(collector.Value(0, task.EndExpr().Var())); TimeSpan greenTime = endValue.Subtract(startValue); TimeSpan timeEnd; timeEnd = timeStartBucket.Add(greenTime); List <TimeSpan> tuple = new List <TimeSpan>(); tuple.Add(timeStartBucket); if (timeEndBucket.CompareTo(timeEnd) < 0) { timeEnd = timeEndBucket; isEnd = true; } tuple.Add(timeEnd); tuplesSolution.Add(tuple); if (taskIndex + 1 < list_id.Count() && list_id.ElementAt(taskIndex) == list_id.ElementAt(taskIndex + 1)) { timeStartBucket = timeStartBucket.Add(TimeSpan.FromSeconds(this.cycleTime)); } else { timeStartBucket = timeEnd; } if (isEnd) { break; } } } // // Saving the Solution to a XML file // JobShop.save(m, tuplesSolution); //solLine += "\n"; //solLineTasks += "\n"; //Console.WriteLine(solLineTasks); //Console.WriteLine(solLine); } } else { Console.WriteLine("No solution found!"); } }
public static void Main(String[] args) { InitTaskList(); Solver solver = new Solver("Jobshop"); // ----- Creates all Intervals and vars ----- // All tasks List <IntervalVar> allTasks = new List <IntervalVar>(); // Stores all tasks attached interval variables per job. List <List <IntervalVar> > jobsToTasks = new List <List <IntervalVar> >(jobsCount); // machinesToTasks stores the same interval variables as above, but // grouped my machines instead of grouped by jobs. List <List <IntervalVar> > machinesToTasks = new List <List <IntervalVar> >(machinesCount); for (int i = 0; i < machinesCount; i++) { machinesToTasks.Add(new List <IntervalVar>()); } // Creates all individual interval variables. foreach (List <Task> job in myJobList) { jobsToTasks.Add(new List <IntervalVar>()); foreach (Task task in job) { IntervalVar oneTask = solver.MakeFixedDurationIntervalVar( 0, horizon, task.Duration, false, task.Name); jobsToTasks[task.JobId].Add(oneTask); allTasks.Add(oneTask); machinesToTasks[task.Machine].Add(oneTask); } } // ----- Creates model ----- // Creates precedences inside jobs. foreach (List <IntervalVar> jobToTask in jobsToTasks) { int tasksCount = jobToTask.Count; for (int task_index = 0; task_index < tasksCount - 1; ++task_index) { IntervalVar t1 = jobToTask[task_index]; IntervalVar t2 = jobToTask[task_index + 1]; Constraint prec = solver.MakeIntervalVarRelation(t2, Solver.STARTS_AFTER_END, t1); solver.Add(prec); } } // Adds disjunctive constraints on unary resources, and creates // sequence variables. A sequence variable is a dedicated variable // whose job is to sequence interval variables. SequenceVar[] allSequences = new SequenceVar[machinesCount]; for (int machineId = 0; machineId < machinesCount; ++machineId) { string name = "Machine_" + machineId; DisjunctiveConstraint ct = solver.MakeDisjunctiveConstraint(machinesToTasks[machineId].ToArray(), name); solver.Add(ct); allSequences[machineId] = ct.SequenceVar(); } // Creates array of end_times of jobs. IntVar[] allEnds = new IntVar[jobsCount]; for (int i = 0; i < jobsCount; i++) { IntervalVar task = jobsToTasks[i].Last(); allEnds[i] = task.EndExpr().Var(); } // Objective: minimize the makespan (maximum end times of all tasks) // of the problem. IntVar objectiveVar = solver.MakeMax(allEnds).Var(); OptimizeVar objectiveMonitor = solver.MakeMinimize(objectiveVar, 1); // ----- Search monitors and decision builder ----- // This decision builder will rank all tasks on all machines. DecisionBuilder sequencePhase = solver.MakePhase(allSequences, Solver.SEQUENCE_DEFAULT); // After the ranking of tasks, the schedule is still loose and any // task can be postponed at will. But, because the problem is now a PERT // (http://en.wikipedia.org/wiki/Program_Evaluation_and_Review_Technique), // we can schedule each task at its earliest start time. This iscs // conveniently done by fixing the objective variable to its // minimum value. DecisionBuilder objPhase = solver.MakePhase( objectiveVar, Solver.CHOOSE_FIRST_UNBOUND, Solver.ASSIGN_MIN_VALUE); // The main decision builder (ranks all tasks, then fixes the // objectiveVariable). DecisionBuilder mainPhase = solver.Compose(sequencePhase, objPhase); // Search log. const int kLogFrequency = 1000000; SearchMonitor searchLog = solver.MakeSearchLog(kLogFrequency, objectiveMonitor); SearchLimit limit = null; if (timeLimitInMs > 0) { limit = solver.MakeTimeLimit(timeLimitInMs); } SolutionCollector collector = solver.MakeLastSolutionCollector(); collector.Add(allSequences); collector.Add(allTasks.ToArray()); // Search. bool solutionFound = solver.Solve(mainPhase, searchLog, objectiveMonitor, limit, collector); if (solutionFound) { //The index of the solution from the collector const int SOLUTION_INDEX = 0; Assignment solution = collector.Solution(SOLUTION_INDEX); for (int m = 0; m < machinesCount; ++m) { Console.WriteLine("Machine " + m + " :"); SequenceVar seq = allSequences[m]; int[] storedSequence = collector.ForwardSequence(SOLUTION_INDEX, seq); foreach (int taskIndex in storedSequence) { IntervalVar task = seq.Interval(taskIndex); long startMin = solution.StartMin(task); long startMax = solution.StartMax(task); if (startMin == startMax) { Console.WriteLine("Task " + task.Name() + " starts at " + startMin + "."); } else { Console.WriteLine("Task " + task.Name() + " starts between " + startMin + " and " + startMax + "."); } } } } else { Console.WriteLine("No solution found!"); } }