コード例 #1
0
        /// <summary>
        /// Obtém a solução do problema a partir das variáveis de compatibilidade.
        /// </summary>
        /// <param name="resultCosts">Os custos por componente.</param>
        /// <param name="variables">A lista das variáveis escolhidas.</param>
        /// <param name="costsMatrices">As matrizes de custos.</param>
        /// <returns>A solução.</returns>
        private GreedyAlgSolution <CostsType>[] GetSolution(
            CostsType[] resultCosts,
            List <CoordsElement>[] variables,
            List <ILongSparseMathMatrix <CostsType> > costsMatrices)
        {
            var result = new GreedyAlgSolution <CostsType> [variables.Length];

            for (int i = 0; i < result.Length; ++i)
            {
                var integerSequence = new IntegerSequence();
                integerSequence.Add(0, costsMatrices[i].GetLength(0) - 1);
                var currentVariables = variables[i];
                for (int j = 0; j < currentVariables.Count; ++j)
                {
                    var column = currentVariables[j].Column;
                    integerSequence.Remove(column);
                }

                var algSol = new GreedyAlgSolution <CostsType>(integerSequence);
                algSol.Cost = resultCosts[i];

                result[i] = algSol;
            }

            return(result);
        }
コード例 #2
0
        public void Statistics_DicModeAlgTest()
        {
            var target = new DicModeAlgorithm <int>();
            var source = new IntegerSequence();

            for (var i = 0; i < 1000; ++i)
            {
                source.Clear();
                source.Add(0, i);
                var innerActual = target.Run(source);
                Assert.AreEqual(source.Count, innerActual.Count);

                innerActual.Sort();
                for (var j = 0; j < source.Count; ++j)
                {
                    Assert.AreEqual(source[j], innerActual[j]);
                }
            }

            var arraySource = new int[] { 1, 3, 2, 2, 1, 3, 3, 3, 3, 4, 2 };
            var expected    = 3;
            var actual      = target.Run(arraySource);

            Assert.AreEqual(1, actual.Count);
            Assert.AreEqual(expected, actual[0]);
        }
コード例 #3
0
        public void Statistics_DicMedianAlgTest()
        {
            var target = new DicMedianAlgorithm <int>();
            var source = new IntegerSequence();

            var expected = 1;

            for (var i = 1; i < 1000; i += 2)
            {
                source.Clear();
                source.Add(1, i);
                var actual = target.Run(source);
                Assert.AreEqual(expected, actual.Item1);
                Assert.AreEqual(expected, actual.Item2);

                ++expected;
            }

            expected = 1;
            for (var i = 2; i < 1000; i += 2)
            {
                source.Clear();
                source.Add(1, i);
                var actual = target.Run(source);
                Assert.AreEqual(expected++, actual.Item1);
                Assert.AreEqual(expected, actual.Item2);
            }

            var arraySource = new int[] { 1, 3, 2, 2, 1, 3, 3, 3, 3, 4, 2 };

            expected = 3;
            var outerActual = target.Run(arraySource);

            Assert.AreEqual(expected, outerActual.Item1);
            Assert.AreEqual(expected, outerActual.Item2);

            arraySource = new int[] { 1, 3, 2, 2, 1, 3, 3, 3, 4, 2 };
            expected    = 2;
            outerActual = target.Run(arraySource);
            Assert.AreEqual(expected++, outerActual.Item1);
            Assert.AreEqual(expected, outerActual.Item2);
        }
コード例 #4
0
        /// <summary>
        /// Determina o polinómio característico de uma matriz.
        /// </summary>
        /// <param name="data">A matriz.</param>
        /// <returns>O polinómio característico.</returns>
        public UnivariatePolynomialNormalForm <ElementType> Run(ISquareMathMatrix <ElementType> data)
        {
            if (data == null)
            {
                return(new UnivariatePolynomialNormalForm <ElementType>(this.variableName));
            }
            else
            {
                var lines = data.GetLength(0);
                if (lines == 0)
                {
                    return(new UnivariatePolynomialNormalForm <ElementType>(this.variableName));
                }
                else if (lines == 1)
                {
                    var entry  = data[0, 0];
                    var result = new UnivariatePolynomialNormalForm <ElementType>(
                        this.ring.MultiplicativeUnity,
                        1,
                        this.variableName,
                        this.ring);
                    result = result.Add(this.ring.AdditiveInverse(entry), 0, this.ring);
                    return(result);
                }
                else if (lines == 2)
                {
                    var variablePol = new UnivariatePolynomialNormalForm <ElementType>(
                        this.ring.MultiplicativeUnity,
                        1,
                        this.variableName,
                        this.ring);
                    var firstDiagonalElement = variablePol.Add(
                        this.ring.AdditiveInverse(data[0, 0]),
                        this.ring);
                    var secondDiagonalElement = variablePol.Add(
                        this.ring.AdditiveInverse(data[1, 1]),
                        this.ring);
                    var result = firstDiagonalElement.Multiply(secondDiagonalElement, this.ring);
                    result = result.Add(
                        this.ring.AdditiveInverse(this.ring.Multiply(data[0, 1], data[1, 0])),
                        this.ring);
                    return(result);
                }
                else
                {
                    var matrixFactory       = new ArrayMathMatrixFactory <ElementType>();
                    var matrixMultiplicator = new MatrixMultiplicationOperation <ElementType>(
                        matrixFactory, this.ring, this.ring);
                    var subMatrixSequence   = new IntegerSequence();
                    var singleValueSequence = new IntegerSequence();

                    IMatrix <ElementType> multiplicationMatrix = new ArrayMathMatrix <ElementType>(
                        lines + 1,
                        lines,
                        this.ring.AdditiveUnity);
                    subMatrixSequence.Add(1, lines - 1);
                    singleValueSequence.Add(0);
                    this.FillMultiplicationMatrix(
                        data,
                        data[0, 0],
                        subMatrixSequence,
                        singleValueSequence,
                        matrixMultiplicator,
                        multiplicationMatrix);

                    var currentDimension = 1;
                    while (currentDimension < lines - 1)
                    {
                        subMatrixSequence.Clear();
                        singleValueSequence.Clear();
                        subMatrixSequence.Add(currentDimension + 1, lines - 1);
                        singleValueSequence.Add(currentDimension);
                        var otherLines = lines - currentDimension;
                        var otherMultiplicationMatrix = new ArrayMathMatrix <ElementType>(
                            otherLines + 1,
                            otherLines,
                            this.ring.AdditiveUnity);

                        this.FillMultiplicationMatrix(
                            data,
                            data[currentDimension, currentDimension],
                            subMatrixSequence,
                            singleValueSequence,
                            matrixMultiplicator,
                            otherMultiplicationMatrix);

                        multiplicationMatrix = matrixMultiplicator.Multiply(
                            multiplicationMatrix,
                            otherMultiplicationMatrix);
                        ++currentDimension;
                    }

                    var lastOtherMultiplicationMatrix = new ArrayMathMatrix <ElementType>(
                        2,
                        1,
                        this.ring.AdditiveUnity);
                    lastOtherMultiplicationMatrix[0, 0] = this.ring.MultiplicativeUnity;
                    lastOtherMultiplicationMatrix[1, 0] = this.ring.AdditiveInverse(data[currentDimension, currentDimension]);
                    multiplicationMatrix = matrixMultiplicator.Multiply(
                        multiplicationMatrix,
                        lastOtherMultiplicationMatrix);

                    var result = new UnivariatePolynomialNormalForm <ElementType>(
                        multiplicationMatrix[0, 0],
                        lines,
                        this.variableName,
                        this.ring);
                    for (int i = 1; i <= lines; ++i)
                    {
                        result = result.Add(multiplicationMatrix[i, 0], lines - i, this.ring);
                    }

                    return(result);
                }
            }
        }
コード例 #5
0
        /// <summary>
        /// Obtém uma solução a partir duma aproximação inicial.
        /// </summary>
        /// <param name="approximateMedians">As medianas.</param>
        /// <param name="costs">Os custos.</param>
        /// <param name="niter">O número máximo melhoramentos a serem aplicados à solução encontrada.</param>
        /// <returns>A solução construída a partir da aproximação.</returns>
        public GreedyAlgSolution <CoeffType> Run(
            CoeffType[] approximateMedians,
            ILongSparseMathMatrix <CoeffType> costs,
            int niter)
        {
            if (approximateMedians == null)
            {
                throw new ArgumentNullException("approximateMedians");
            }
            else if (costs == null)
            {
                throw new ArgumentNullException("costs");
            }
            else if (approximateMedians.Length != costs.GetLength(1))
            {
                throw new ArgumentException("The number of medians must match the number of columns in costs matrix.");
            }
            else
            {
                var settedSolutions      = new IntegerSequence();
                var approximateSolutions = new List <int>();
                var sum = this.coeffsField.AdditiveUnity;
                for (int i = 0; i < approximateMedians.Length; ++i)
                {
                    var currentMedian = approximateMedians[i];
                    if (!this.coeffsField.IsAdditiveUnity(currentMedian))
                    {
                        sum = this.coeffsField.Add(sum, approximateMedians[i]);
                        if (this.converter.CanApplyDirectConversion(currentMedian))
                        {
                            var converted = this.converter.DirectConversion(currentMedian);
                            if (converted == 1)
                            {
                                settedSolutions.Add(i);
                            }
                            else
                            {
                                throw new OdmpProblemException(string.Format(
                                                                   "The median {0} at position {1} of medians array can't be converted to the unity.",
                                                                   currentMedian,
                                                                   i));
                            }
                        }
                        else
                        {
                            approximateSolutions.Add(i);
                        }
                    }
                }

                if (this.converter.CanApplyDirectConversion(sum))
                {
                    var convertedSum = this.converter.DirectConversion(sum);
                    if (convertedSum <= 0 || convertedSum > approximateMedians.Length)
                    {
                        throw new IndexOutOfRangeException(string.Format(
                                                               "The medians sum {0} is out of bounds. It must be between 1 and the number of elements in medians array.",
                                                               convertedSum));
                    }

                    var solutionBoard = new CoeffType[approximateMedians.Length];
                    var marked        = new BitArray(approximateMedians.Length, false);
                    if (settedSolutions.Count == convertedSum)
                    {
                        var result = new GreedyAlgSolution <CoeffType>(settedSolutions);
                        result.Cost = this.ComputeCost(settedSolutions, costs, solutionBoard, marked);
                        return(result);
                    }
                    else
                    {
                        // Partição das mediana em dois conjuntos: as que vão falzer parte da solução e as restantes
                        // entre as soluções aproximadas.
                        var recoveredMedians   = new List <int>();
                        var unrecoveredMedians = new List <int>();
                        var innerComparer      = new InnerComparer(approximateMedians, this.comparer);
                        approximateSolutions.Sort(innerComparer);

                        var count = convertedSum - settedSolutions.Count;
                        var i     = 0;
                        for (; i < count; ++i)
                        {
                            recoveredMedians.Add(approximateSolutions[i]);
                            settedSolutions.Add(approximateSolutions[i]);
                        }

                        for (; i < approximateSolutions.Count; ++i)
                        {
                            unrecoveredMedians.Add(approximateSolutions[i]);
                        }

                        var currentCost = this.ComputeCost(settedSolutions, costs, solutionBoard, marked);

                        // Processa as melhorias de uma forma simples caso seja possível
                        if (unrecoveredMedians.Count > 0 && niter > 0)
                        {
                            var exchangeSolutionBoard = new CoeffType[solutionBoard.Length];
                            var currentBestBoard      = new CoeffType[solutionBoard.Length];
                            for (i = 0; i < niter; ++i)
                            {
                                var itemToExchange          = -1;
                                var itemToExchangeIndex     = -1;
                                var itemToExchangeWith      = -1;
                                var itemToExchangeWithIndex = -1;
                                var minimumCost             = this.coeffsField.AdditiveUnity;
                                for (int j = 0; j < recoveredMedians.Count; ++j)
                                {
                                    for (int k = 0; k < unrecoveredMedians.Count; ++k)
                                    {
                                        var replacementCost = this.ComputeReplacementCost(
                                            unrecoveredMedians[k],
                                            recoveredMedians[j],
                                            settedSolutions,
                                            costs,
                                            solutionBoard,
                                            exchangeSolutionBoard);
                                        if (this.comparer.Compare(replacementCost, minimumCost) < 0)
                                        {
                                            // Aceita a troca
                                            itemToExchange          = recoveredMedians[j];
                                            itemToExchangeIndex     = j;
                                            itemToExchangeWith      = unrecoveredMedians[k];
                                            itemToExchangeWithIndex = k;
                                            minimumCost             = replacementCost;

                                            var swapBestBoard = currentBestBoard;
                                            currentBestBoard      = exchangeSolutionBoard;
                                            exchangeSolutionBoard = swapBestBoard;
                                        }
                                    }
                                }

                                if (itemToExchange == -1 || itemToExchangeWith == -1)
                                {
                                    i = niter - 1;
                                }
                                else
                                {
                                    // Efectua a troca
                                    var swapSolutionBoard = solutionBoard;
                                    solutionBoard    = currentBestBoard;
                                    currentBestBoard = swapSolutionBoard;

                                    currentCost = this.coeffsField.Add(currentCost, minimumCost);
                                    settedSolutions.Remove(itemToExchange);
                                    settedSolutions.Add(itemToExchangeWith);

                                    var swap = recoveredMedians[itemToExchangeIndex];
                                    recoveredMedians[itemToExchangeIndex]       = unrecoveredMedians[itemToExchangeWithIndex];
                                    unrecoveredMedians[itemToExchangeWithIndex] = swap;
                                }
                            }
                        }

                        return(new GreedyAlgSolution <CoeffType>(settedSolutions)
                        {
                            Cost = currentCost
                        });
                    }
                }
                else
                {
                    throw new OdmpProblemException("The sum of medians can't be converted to an integer.");
                }
            }
        }
コード例 #6
0
        public void Statistcs_EnumGeneralizeMeanAlgorithmTest()
        {
            var integerNumb = new IntegerDomain();
            var target      = new EnumGeneralizedMeanAlgorithm <int, double, int>(
                i => i,
                d => d,
                (d, i) => d / i,
                new DoubleField(),
                integerNumb);

            var integerSequence = new IntegerSequence();

            for (var i = 1; i < 5000; ++i)
            {
                integerSequence.Add(i);
                var expected = (i + 1) / 2.0;
                var actual   = target.Run(integerSequence);
                Assert.AreEqual(expected, actual);
            }

            integerSequence = new IntegerSequence();
            var n = 1000000;

            integerSequence.Add(1, n);
            var outerExpected = (n + 1) / 2.0;
            var outerActual   = target.Run(integerSequence);

            Assert.AreEqual(outerExpected, outerActual);

            var bigIntegerDomain = new BigIntegerDomain();
            var fractionField    = new FractionField <BigInteger>(bigIntegerDomain);
            var fractionTarget   = new EnumGeneralizedMeanAlgorithm <int, Fraction <BigInteger>, int>(
                i => new Fraction <BigInteger>(i, 1, bigIntegerDomain),
                d => d,
                (d, i) => d.Divide(i, bigIntegerDomain),
                fractionField,
                integerNumb);
            var fractionExpected = new Fraction <BigInteger>(n + 1, 2, bigIntegerDomain);
            var fractionActual   = fractionTarget.Run(integerSequence);

            Assert.AreEqual(fractionExpected, fractionActual);

            // Teste com alteração da função directa
            fractionTarget.DirectFunction = i => new Fraction <BigInteger>(new BigInteger(i) * i, 1, bigIntegerDomain);
            fractionExpected = new Fraction <BigInteger>(
                (new BigInteger(n) + BigInteger.One) * (2 * new BigInteger(n) + 1), 6, bigIntegerDomain);
            fractionActual = fractionTarget.Run(integerSequence);
            Assert.AreEqual(fractionExpected, fractionActual);

            // Teste com transformação
            var transformedTarget = new EnumGeneralizedMeanAlgorithm <BigInteger, Fraction <BigInteger>, int>(
                i => new Fraction <BigInteger>(i, 1, bigIntegerDomain),
                d => d,
                (d, i) => d.Divide(i, bigIntegerDomain),
                fractionField,
                integerNumb);
            var transformedSeq = new TransformEnumerable <int, BigInteger>(
                integerSequence,
                i => new BigInteger(i) * i);
            var transformedExpected = new Fraction <BigInteger>(
                (new BigInteger(n) + BigInteger.One) * (2 * new BigInteger(n) + 1), 6, bigIntegerDomain);
            var transformedActual = transformedTarget.Run(transformedSeq);

            Assert.AreEqual(transformedExpected, transformedActual);
        }
コード例 #7
0
        public void Statistcs_EnumGeneralizeMeanBlockAlgorithmTest()
        {
            var integerNumb = new IntegerDomain();
            var target      = new EnumGeneralizedMeanAlgorithm <int, double, int>(
                i => i,
                d => d,
                (d, i) => d / i,
                new DoubleField(),
                integerNumb);
            var blockNumber = 2500;

            var integerSequence = new IntegerSequence();

            for (var i = 1; i < 5500; ++i)
            {
                integerSequence.Add(i);
                var expected = (i + 1) / 2.0;
                var actual   = target.Run <double>(
                    integerSequence,
                    blockNumber,
                    (j, k) => j / (double)k,
                    (d1, d2) => d1 * d2);
                Assert.IsTrue(Math.Abs(expected - actual) < 0.0001);
            }

            integerSequence = new IntegerSequence();
            var n = 1000500;

            integerSequence.Add(1, n);
            var outerExpected = (n + 1) / 2.0;
            var outerActual   = target.Run <double>(
                integerSequence,
                blockNumber,
                (j, k) => j / (double)k,
                (d1, d2) => d1 * d2);

            Assert.AreEqual(outerExpected, outerActual);

            var integerDomain = new BigIntegerDomain();
            var fractionField = new FractionField <BigInteger>(integerDomain);
            var fracTarget    = new EnumGeneralizedMeanAlgorithm <int, Fraction <BigInteger>, int>(
                i => new Fraction <BigInteger>(i, 1, integerDomain),
                d => d,
                (d, i) => d.Divide(i, integerDomain),
                fractionField,
                integerNumb);

            var fractionExpected = new Fraction <BigInteger>(n + 1, 2, integerDomain);
            var fractionActual   = fracTarget.Run <Fraction <BigInteger> >(
                integerSequence,
                blockNumber,
                (j, k) => new Fraction <BigInteger>(j, k, integerDomain),
                (d1, d2) => d1.Multiply(d2, integerDomain));

            Assert.AreEqual(fractionExpected, fractionActual);

            // Teste com alteração da função directa
            fracTarget.DirectFunction = i => new Fraction <BigInteger>(new BigInteger(i) * i, 1, integerDomain);
            fractionExpected          = new Fraction <BigInteger>(
                (new BigInteger(n) + BigInteger.One) * (2 * new BigInteger(n) + 1), 6, integerDomain);
            fractionActual = fracTarget.Run <Fraction <BigInteger> >(
                integerSequence,
                blockNumber,
                (j, k) => new Fraction <BigInteger>(j, k, integerDomain),
                (d1, d2) => d1.Multiply(d2, integerDomain));

            // Teste com transformação
            var transformedTarget = new EnumGeneralizedMeanAlgorithm <BigInteger, Fraction <BigInteger>, int>(
                i => new Fraction <BigInteger>(i, 1, integerDomain),
                d => d,
                (d, i) => d.Divide(i, integerDomain),
                fractionField,
                integerNumb);
            var transformedSeq = new TransformEnumerable <int, BigInteger>(
                integerSequence,
                i => new BigInteger(i) * i);
            var transformedExpected = new Fraction <BigInteger>(
                (new BigInteger(n) + BigInteger.One) * (2 * new BigInteger(n) + 1), 6, integerDomain);
            var transformedActual = transformedTarget.Run <Fraction <BigInteger> >(
                transformedSeq,
                blockNumber,
                (j, k) => new Fraction <BigInteger>(j, k, integerDomain),
                (d1, d2) => d1.Multiply(d2, integerDomain));

            Assert.AreEqual(transformedExpected, transformedActual);
        }