public void TensorFlowTransformCifarInvalidShape() { var model_location = "cifar_model/frozen_model.pb"; var mlContext = new MLContext(seed: 1, conc: 1); var imageHeight = 28; var imageWidth = 28; var dataFile = GetDataPath("images/images.tsv"); var imageFolder = Path.GetDirectoryName(dataFile); var data = TextLoader.Create(mlContext, new TextLoader.Arguments() { Column = new[] { new TextLoader.Column("ImagePath", DataKind.TX, 0), new TextLoader.Column("Name", DataKind.TX, 1), } }, new MultiFileSource(dataFile)); var images = ImageLoaderTransform.Create(mlContext, new ImageLoaderTransform.Arguments() { Column = new ImageLoaderTransform.Column[1] { new ImageLoaderTransform.Column() { Source = "ImagePath", Name = "ImageReal" } }, ImageFolder = imageFolder }, data); var cropped = ImageResizerTransform.Create(mlContext, new ImageResizerTransform.Arguments() { Column = new ImageResizerTransform.Column[1] { new ImageResizerTransform.Column() { Source = "ImageReal", Name = "ImageCropped", ImageHeight = imageHeight, ImageWidth = imageWidth, Resizing = ImageResizerTransform.ResizingKind.IsoCrop } } }, images); var pixels = ImagePixelExtractorTransform.Create(mlContext, new ImagePixelExtractorTransform.Arguments() { Column = new ImagePixelExtractorTransform.Column[1] { new ImagePixelExtractorTransform.Column() { Source = "ImageCropped", Name = "Input", UseAlpha = false, InterleaveArgb = true } } }, cropped); var thrown = false; try { IDataView trans = TensorFlowTransform.Create(mlContext, pixels, model_location, new[] { "Output" }, new[] { "Input" }); } catch { thrown = true; } Assert.True(thrown); }
public void TensorFlowTransformCifar() { var model_location = "cifar_model/frozen_model.pb"; using (var env = new TlcEnvironment()) { var imageHeight = 32; var imageWidth = 32; var dataFile = GetDataPath("images/images.tsv"); var imageFolder = Path.GetDirectoryName(dataFile); var data = env.CreateLoader("Text{col=ImagePath:TX:0 col=Name:TX:1}", new MultiFileSource(dataFile)); var images = ImageLoaderTransform.Create(env, new ImageLoaderTransform.Arguments() { Column = new ImageLoaderTransform.Column[1] { new ImageLoaderTransform.Column() { Source = "ImagePath", Name = "ImageReal" } }, ImageFolder = imageFolder }, data); var cropped = ImageResizerTransform.Create(env, new ImageResizerTransform.Arguments() { Column = new ImageResizerTransform.Column[1] { new ImageResizerTransform.Column() { Source = "ImageReal", Name = "ImageCropped", ImageHeight = imageHeight, ImageWidth = imageWidth, Resizing = ImageResizerTransform.ResizingKind.IsoCrop } } }, images); var pixels = ImagePixelExtractorTransform.Create(env, new ImagePixelExtractorTransform.Arguments() { Column = new ImagePixelExtractorTransform.Column[1] { new ImagePixelExtractorTransform.Column() { Source = "ImageCropped", Name = "Input", UseAlpha = false, InterleaveArgb = true } } }, cropped); IDataView trans = TensorFlowTransform.Create(env, pixels, model_location, "Output", "Input"); trans.Schema.TryGetColumnIndex("Output", out int output); using (var cursor = trans.GetRowCursor(col => col == output)) { var buffer = default(VBuffer <float>); var getter = cursor.GetGetter <VBuffer <float> >(output); while (cursor.MoveNext()) { getter(ref buffer); Assert.Equal(10, buffer.Length); } } } }
public void TensorFlowTransformInceptionTest() { var model_location = @"C:\models\TensorFlow\tensorflow_inception_graph.pb"; using (var env = new ConsoleEnvironment(seed: 1, conc: 1)) { var dataFile = GetDataPath("images/images.tsv"); var imageFolder = Path.GetDirectoryName(dataFile); var data = env.CreateLoader("Text{col=ImagePath:TX:0 col=Name:TX:1}", new MultiFileSource(dataFile)); var images = ImageLoaderTransform.Create(env, new ImageLoaderTransform.Arguments() { Column = new ImageLoaderTransform.Column[1] { new ImageLoaderTransform.Column() { Source = "ImagePath", Name = "ImageReal" } }, ImageFolder = imageFolder }, data); var cropped = ImageResizerTransform.Create(env, new ImageResizerTransform.Arguments() { Column = new ImageResizerTransform.Column[1] { new ImageResizerTransform.Column() { Source = "ImageReal", Name = "ImageCropped", ImageHeight = 224, ImageWidth = 224, Resizing = ImageResizerTransform.ResizingKind.IsoCrop } } }, images); var pixels = ImagePixelExtractorTransform.Create(env, new ImagePixelExtractorTransform.Arguments() { Column = new ImagePixelExtractorTransform.Column[1] { new ImagePixelExtractorTransform.Column() { Source = "ImageCropped", Name = "input", UseAlpha = false, InterleaveArgb = true, Convert = true } } }, cropped); var tf = TensorFlowTransform.Create(env, pixels, model_location, "softmax2_pre_activation", "input"); tf.Schema.TryGetColumnIndex("input", out int input); tf.Schema.TryGetColumnIndex("softmax2_pre_activation", out int b); using (var curs = tf.GetRowCursor(col => col == b || col == input)) { var get = curs.GetGetter <VBuffer <float> >(b); var getInput = curs.GetGetter <VBuffer <float> >(input); var buffer = default(VBuffer <float>); var inputBuffer = default(VBuffer <float>); while (curs.MoveNext()) { getInput(ref inputBuffer); get(ref buffer); } } } }
public void TestSaveImages() { using (var env = new ConsoleEnvironment()) { var dataFile = GetDataPath("images/images.tsv"); var imageFolder = Path.GetDirectoryName(dataFile); var data = TextLoader.Create(env, new TextLoader.Arguments() { Column = new[] { new TextLoader.Column("ImagePath", DataKind.TX, 0), new TextLoader.Column("Name", DataKind.TX, 1), } }, new MultiFileSource(dataFile)); var images = ImageLoaderTransform.Create(env, new ImageLoaderTransform.Arguments() { Column = new ImageLoaderTransform.Column[1] { new ImageLoaderTransform.Column() { Source = "ImagePath", Name = "ImageReal" } }, ImageFolder = imageFolder }, data); IDataView cropped = ImageResizerTransform.Create(env, new ImageResizerTransform.Arguments() { Column = new ImageResizerTransform.Column[1] { new ImageResizerTransform.Column() { Name = "ImageCropped", Source = "ImageReal", ImageHeight = 100, ImageWidth = 100, Resizing = ImageResizerTransform.ResizingKind.IsoPad } } }, images); cropped.Schema.TryGetColumnIndex("ImagePath", out int pathColumn); cropped.Schema.TryGetColumnIndex("ImageCropped", out int cropBitmapColumn); using (var cursor = cropped.GetRowCursor((x) => true)) { var pathGetter = cursor.GetGetter <ReadOnlyMemory <char> >(pathColumn); ReadOnlyMemory <char> path = default; var bitmapCropGetter = cursor.GetGetter <Bitmap>(cropBitmapColumn); Bitmap bitmap = default; while (cursor.MoveNext()) { pathGetter(ref path); bitmapCropGetter(ref bitmap); Assert.NotNull(bitmap); var fileToSave = GetOutputPath(Path.GetFileNameWithoutExtension(path.ToString()) + ".cropped.jpg"); bitmap.Save(fileToSave, System.Drawing.Imaging.ImageFormat.Jpeg); } } } Done(); }
public void TensorFlowTransformCifarInvalidShape() { var model_location = "cifar_model/frozen_model.pb"; using (var env = new ConsoleEnvironment()) { var imageHeight = 28; var imageWidth = 28; var dataFile = GetDataPath("images/images.tsv"); var imageFolder = Path.GetDirectoryName(dataFile); var data = env.CreateLoader("Text{col=ImagePath:TX:0 col=Name:TX:1}", new MultiFileSource(dataFile)); var images = ImageLoaderTransform.Create(env, new ImageLoaderTransform.Arguments() { Column = new ImageLoaderTransform.Column[1] { new ImageLoaderTransform.Column() { Source = "ImagePath", Name = "ImageReal" } }, ImageFolder = imageFolder }, data); var cropped = ImageResizerTransform.Create(env, new ImageResizerTransform.Arguments() { Column = new ImageResizerTransform.Column[1] { new ImageResizerTransform.Column() { Source = "ImageReal", Name = "ImageCropped", ImageHeight = imageHeight, ImageWidth = imageWidth, Resizing = ImageResizerTransform.ResizingKind.IsoCrop } } }, images); var pixels = ImagePixelExtractorTransform.Create(env, new ImagePixelExtractorTransform.Arguments() { Column = new ImagePixelExtractorTransform.Column[1] { new ImagePixelExtractorTransform.Column() { Source = "ImageCropped", Name = "Input", UseAlpha = false, InterleaveArgb = true } } }, cropped); var thrown = false; try { IDataView trans = TensorFlowTransform.Create(env, pixels, model_location, "Output", "Input"); } catch { thrown = true; } Assert.True(thrown); } }
public static CommonOutputs.TransformOutput ImageLoader(IHostEnvironment env, ImageLoaderTransform.Arguments input) { var h = EntryPointUtils.CheckArgsAndCreateHost(env, "ImageLoaderTransform", input); var xf = ImageLoaderTransform.Create(h, input, input.Data); return(new CommonOutputs.TransformOutput() { Model = new TransformModel(h, xf, input.Data), OutputData = xf }); }
public void TestBackAndForthConversionWithoutAlphaNoInterleaveNoOffset() { using (var env = new ConsoleEnvironment()) { var imageHeight = 100; var imageWidth = 130; var dataFile = GetDataPath("images/images.tsv"); var imageFolder = Path.GetDirectoryName(dataFile); var data = TextLoader.Create(env, new TextLoader.Arguments() { Column = new[] { new TextLoader.Column("ImagePath", DataKind.TX, 0), new TextLoader.Column("Name", DataKind.TX, 1), } }, new MultiFileSource(dataFile)); var images = ImageLoaderTransform.Create(env, new ImageLoaderTransform.Arguments() { Column = new ImageLoaderTransform.Column[1] { new ImageLoaderTransform.Column() { Source = "ImagePath", Name = "ImageReal" } }, ImageFolder = imageFolder }, data); var cropped = ImageResizerTransform.Create(env, new ImageResizerTransform.Arguments() { Column = new ImageResizerTransform.Column[1] { new ImageResizerTransform.Column() { Source = "ImageReal", Name = "ImageCropped", ImageHeight = imageHeight, ImageWidth = imageWidth, Resizing = ImageResizerTransform.ResizingKind.IsoCrop } } }, images); var pixels = ImagePixelExtractorTransform.Create(env, new ImagePixelExtractorTransform.Arguments() { InterleaveArgb = false, Column = new ImagePixelExtractorTransform.Column[1] { new ImagePixelExtractorTransform.Column() { Source = "ImageCropped", Name = "ImagePixels", UseAlpha = false } } }, cropped); IDataView backToBitmaps = new VectorToImageTransform(env, new VectorToImageTransform.Arguments() { InterleaveArgb = false, Column = new VectorToImageTransform.Column[1] { new VectorToImageTransform.Column() { Source = "ImagePixels", Name = "ImageRestored", ImageHeight = imageHeight, ImageWidth = imageWidth, ContainsAlpha = false } } }, pixels); var fname = nameof(TestBackAndForthConversionWithoutAlphaNoInterleaveNoOffset) + "_model.zip"; var fh = env.CreateOutputFile(fname); using (var ch = env.Start("save")) TrainUtils.SaveModel(env, ch, fh, null, new RoleMappedData(backToBitmaps)); backToBitmaps = ModelFileUtils.LoadPipeline(env, fh.OpenReadStream(), new MultiFileSource(dataFile)); DeleteOutputPath(fname); backToBitmaps.Schema.TryGetColumnIndex("ImageRestored", out int bitmapColumn); backToBitmaps.Schema.TryGetColumnIndex("ImageCropped", out int cropBitmapColumn); using (var cursor = backToBitmaps.GetRowCursor((x) => true)) { var bitmapGetter = cursor.GetGetter <Bitmap>(bitmapColumn); Bitmap restoredBitmap = default; var bitmapCropGetter = cursor.GetGetter <Bitmap>(cropBitmapColumn); Bitmap croppedBitmap = default; while (cursor.MoveNext()) { bitmapGetter(ref restoredBitmap); Assert.NotNull(restoredBitmap); bitmapCropGetter(ref croppedBitmap); Assert.NotNull(croppedBitmap); for (int x = 0; x < imageWidth; x++) { for (int y = 0; y < imageHeight; y++) { var c = croppedBitmap.GetPixel(x, y); var r = restoredBitmap.GetPixel(x, y); Assert.True(c.R == r.R && c.G == r.G && c.B == r.B); } } } } } Done(); }
public void TestGreyscaleTransformImages() { using (var env = new ConsoleEnvironment()) { var imageHeight = 150; var imageWidth = 100; var dataFile = GetDataPath("images/images.tsv"); var imageFolder = Path.GetDirectoryName(dataFile); var data = TextLoader.Create(env, new TextLoader.Arguments() { Column = new[] { new TextLoader.Column("ImagePath", DataKind.TX, 0), new TextLoader.Column("Name", DataKind.TX, 1), } }, new MultiFileSource(dataFile)); var images = ImageLoaderTransform.Create(env, new ImageLoaderTransform.Arguments() { Column = new ImageLoaderTransform.Column[1] { new ImageLoaderTransform.Column() { Source = "ImagePath", Name = "ImageReal" } }, ImageFolder = imageFolder }, data); var cropped = ImageResizerTransform.Create(env, new ImageResizerTransform.Arguments() { Column = new ImageResizerTransform.Column[1] { new ImageResizerTransform.Column() { Name = "ImageCropped", Source = "ImageReal", ImageHeight = imageHeight, ImageWidth = imageWidth, Resizing = ImageResizerTransform.ResizingKind.IsoCrop } } }, images); IDataView grey = ImageGrayscaleTransform.Create(env, new ImageGrayscaleTransform.Arguments() { Column = new ImageGrayscaleTransform.Column[1] { new ImageGrayscaleTransform.Column() { Name = "ImageGrey", Source = "ImageCropped" } } }, cropped); var fname = nameof(TestGreyscaleTransformImages) + "_model.zip"; var fh = env.CreateOutputFile(fname); using (var ch = env.Start("save")) TrainUtils.SaveModel(env, ch, fh, null, new RoleMappedData(grey)); grey = ModelFileUtils.LoadPipeline(env, fh.OpenReadStream(), new MultiFileSource(dataFile)); DeleteOutputPath(fname); grey.Schema.TryGetColumnIndex("ImageGrey", out int greyColumn); using (var cursor = grey.GetRowCursor((x) => true)) { var bitmapGetter = cursor.GetGetter <Bitmap>(greyColumn); Bitmap bitmap = default; while (cursor.MoveNext()) { bitmapGetter(ref bitmap); Assert.NotNull(bitmap); for (int x = 0; x < imageWidth; x++) { for (int y = 0; y < imageHeight; y++) { var pixel = bitmap.GetPixel(x, y); // greyscale image has same values for R,G and B Assert.True(pixel.R == pixel.G && pixel.G == pixel.B); } } } } } Done(); }
public void TensorFlowTransformObjectDetectionTest() { var model_location = @"C:\models\TensorFlow\ssd_mobilenet_v1_coco_2018_01_28\frozen_inference_graph.pb"; var mlContext = new MLContext(seed: 1, conc: 1); var dataFile = GetDataPath("images/images.tsv"); var imageFolder = Path.GetDirectoryName(dataFile); var data = mlContext.CreateLoader("Text{col=ImagePath:TX:0 col=Name:TX:1}", new MultiFileSource(dataFile)); var images = ImageLoaderTransform.Create(mlContext, new ImageLoaderTransform.Arguments() { Column = new ImageLoaderTransform.Column[1] { new ImageLoaderTransform.Column() { Source = "ImagePath", Name = "ImageReal" } }, ImageFolder = imageFolder }, data); var cropped = ImageResizerTransform.Create(mlContext, new ImageResizerTransform.Arguments() { Column = new ImageResizerTransform.Column[1] { new ImageResizerTransform.Column() { Source = "ImageReal", Name = "ImageCropped", ImageHeight = 32, ImageWidth = 32, Resizing = ImageResizerTransform.ResizingKind.IsoCrop } } }, images); var pixels = ImagePixelExtractorTransform.Create(mlContext, new ImagePixelExtractorTransform.Arguments() { Column = new ImagePixelExtractorTransform.Column[1] { new ImagePixelExtractorTransform.Column() { Source = "ImageCropped", Name = "image_tensor", UseAlpha = false, InterleaveArgb = true, Convert = false } } }, cropped); var tf = TensorFlowTransform.Create(mlContext, pixels, model_location, new[] { "detection_boxes", "detection_scores", "num_detections", "detection_classes" }, new[] { "image_tensor" }); tf.Schema.TryGetColumnIndex("image_tensor", out int input); tf.Schema.TryGetColumnIndex("detection_boxes", out int boxes); tf.Schema.TryGetColumnIndex("detection_scores", out int scores); tf.Schema.TryGetColumnIndex("num_detections", out int num); tf.Schema.TryGetColumnIndex("detection_classes", out int classes); using (var curs = tf.GetRowCursor(col => col == classes || col == num || col == scores || col == boxes || col == input)) { var getInput = curs.GetGetter <VBuffer <byte> >(input); var getBoxes = curs.GetGetter <VBuffer <float> >(boxes); var getScores = curs.GetGetter <VBuffer <float> >(scores); var getNum = curs.GetGetter <VBuffer <float> >(num); var getClasses = curs.GetGetter <VBuffer <float> >(classes); var buffer = default(VBuffer <float>); var inputBuffer = default(VBuffer <byte>); while (curs.MoveNext()) { getInput(ref inputBuffer); getBoxes(ref buffer); getScores(ref buffer); getNum(ref buffer); getClasses(ref buffer); } } }
[ConditionalFact(typeof(Environment), nameof(Environment.Is64BitProcess))] // TensorFlow is 64-bit only public void TensorFlowTransformCifarSavedModel() { var model_location = "cifar_saved_model"; var mlContext = new MLContext(seed: 1, conc: 1); var tensorFlowModel = TensorFlowUtils.LoadTensorFlowModel(mlContext, model_location); var schema = tensorFlowModel.GetInputSchema(); Assert.True(schema.TryGetColumnIndex("Input", out int column)); var type = (VectorType)schema.GetColumnType(column); var imageHeight = type.Dimensions[0]; var imageWidth = type.Dimensions[1]; var dataFile = GetDataPath("images/images.tsv"); var imageFolder = Path.GetDirectoryName(dataFile); var data = TextLoader.Create(mlContext, new TextLoader.Arguments() { Column = new[] { new TextLoader.Column("ImagePath", DataKind.TX, 0), new TextLoader.Column("Name", DataKind.TX, 1), } }, new MultiFileSource(dataFile)); var images = ImageLoaderTransform.Create(mlContext, new ImageLoaderTransform.Arguments() { Column = new ImageLoaderTransform.Column[1] { new ImageLoaderTransform.Column() { Source = "ImagePath", Name = "ImageReal" } }, ImageFolder = imageFolder }, data); var cropped = ImageResizerTransform.Create(mlContext, new ImageResizerTransform.Arguments() { Column = new ImageResizerTransform.Column[1] { new ImageResizerTransform.Column() { Source = "ImageReal", Name = "ImageCropped", ImageHeight = imageHeight, ImageWidth = imageWidth, Resizing = ImageResizerTransform.ResizingKind.IsoCrop } } }, images); var pixels = ImagePixelExtractorTransform.Create(mlContext, new ImagePixelExtractorTransform.Arguments() { Column = new ImagePixelExtractorTransform.Column[1] { new ImagePixelExtractorTransform.Column() { Source = "ImageCropped", Name = "Input", UseAlpha = false, InterleaveArgb = true } } }, cropped); IDataView trans = TensorFlowTransform.Create(mlContext, pixels, tensorFlowModel, new[] { "Output" }, new[] { "Input" }); trans.Schema.TryGetColumnIndex("Output", out int output); using (var cursor = trans.GetRowCursor(col => col == output)) { var buffer = default(VBuffer <float>); var getter = cursor.GetGetter <VBuffer <float> >(output); var numRows = 0; while (cursor.MoveNext()) { getter(ref buffer); Assert.Equal(10, buffer.Length); numRows += 1; } Assert.Equal(3, numRows); } }