public static void Classifiy(BackgroundWorker sender, ImageGrid g, ClassifyProcessParam p, int classifier, int NStep, string path, int blurRadius) { MainWindow.Log("Loading Image (" + p.WorldX + " " + p.WorldY + ")"); DateTime time = DateTime.Now; ImageTile it = null; int max = (int)Math.Pow(2, p.zoom); int TileX = p.TileX - 1; for (int x = p.WorldX - 1; x <= p.WorldX + 1; x++, TileX++) { int TileY = p.TileY - 1; for (int y = p.WorldY - 1; y <= p.WorldY + 1; y++, TileY++) { if (x >= 0 && x < max && y >= 0 && y < max && TileX >= 0 && TileX < g.width && TileY >= 0 && TileY < g.height) { string id = g.id + "_" + p.zoom + "_" + y + "_" + x; string filename = "tmp\\sat\\" + (p.zoom) + "_" + (y) + "_" + (x) + ".png"; if (x == p.WorldX && y == p.WorldY) { MainWindow.dispatcher.Invoke(() => { if (imageTiles.ContainsKey(id)) { it = imageTiles[id]; } else { it = new ImageTile(MainWindow.Instance, g, filename, id, p.zoom, TileX, TileY, false); } }); } else { MainWindow.dispatcher.Invoke(() => { if (!imageTiles.ContainsKey(id)) { ImageTile it_ = new ImageTile(MainWindow.Instance, g, filename, id, p.zoom, TileX, TileY, false); g.AddTile(it_); } }); } } } } if (it == null) { return; } g.AddTile(it); it.Status(new PixelColor(0, 255, 255, 100)); it.classified = false; it.Lock(); MainWindow.Log("Classifying Image (" + p.WorldX + " " + p.WorldY + ")"); try { MainWindow.dispatcher.Invoke(() => { foreach (Classes c in MainWindow.classesList) { g.AddOverlayClass(it, c, MainWindow.Instance); if (c.classifiedPointsList.ContainsKey(it.id)) { c.classifiedPointsList.Remove(it.id); } c.classifiedPointsList.Add(it.id, new FeaturePoint[256, 256]); } }); Parallel.For(0, 256, x => { for (int y = 0; y < 256; y++) { FeaturePoint fp = FeaturePoint.GetOrAddFeaturePoint(x, y, it.id); var output = Array.Empty <double>(); switch (classifier) { case 0: dfprocess(MainWindow.Instance.DecisionForest, fp.GetFeatures(), ref output); break; case 1: mlpprocess(MainWindow.Instance.NeuralNetwork, fp.GetFeatures(), ref output); break; case 2: mlpeprocess(MainWindow.Instance.NeuralNetworkEnsemble, fp.GetFeatures(), ref output); break; default: break; } int predictedClass = 0; for (int k = 1; k < output.Length; k++) { if (output[k] > output[predictedClass]) { predictedClass = k; } } MainWindow.GetClassByNum(predictedClass).classifiedPointsList[it.id][fp.y, fp.x] = fp; } }); it.Unlock(); it.classified = true; float t = (float)(DateTime.Now - time).TotalSeconds; averageClassificationTime = (averageClassificationTime * classificationDone + t) / (classificationDone + 1); classificationDone++; ReportProgress(sender); classificationQueue--; MainWindow.Log("Image (" + p.WorldX + " " + p.WorldY + ") Classification done in " + t + "s. Now waiting for postprocessing"); GC.Collect(); it.Status(new PixelColor(0, 255, 0, 100)); classificationDoneQueue.Enqueue(it.id); } catch (Exception e) { MainWindow.Log("ERROR when classifying Image (" + p.WorldX + " " + p.WorldY + "): " + e.Message); it.Status(new PixelColor(0, 0, 255, 100)); if (it.classified) { classificationQueue++; classificationDone--; } it.classified = false; it.Unlock(); errorClassificationRecoveryQueue.Enqueue(p); GC.Collect(); } }