コード例 #1
0
        public EuropeanPutResult Calculate(double K, double S, double r, double t, double sigma)
        {
            EuropeanPutResult ePut = new EuropeanPutResult();

            ePut.IntegralPointD1 = _integralPoints.CalculateIntegralPointD1(S, K, r, sigma, t);
            ePut.IntegralPointD2 = _integralPoints.CalculateIntegralPointD2(ePut.IntegralPointD1, sigma, t);
            ePut.Distribution1   = _distribution.CumulativeDistribution(-ePut.IntegralPointD1.Result.Value);
            ePut.Distribution2   = _distribution.CumulativeDistribution(-ePut.IntegralPointD2.Result.Value);
            ePut.Result.Value    = CalculateValue(K, S, r, t, ePut);

            return(ePut);
        }
コード例 #2
0
        public BtResult CalculateBtK1(double r, double sigma, double t, double K, double S, int n, double T)
        {
            BtResult bt = new BtResult();

            bt.IntegralPointD1 = _integralPoints.CalculateIntegralPointD1(K, K, r, sigma, t);
            bt.IntegralPointD2 = _integralPoints.CalculateIntegralPointD2(bt.IntegralPointD1, sigma, t);
            bt.Distribution    = _distribution.CumulativeDistribution(bt.IntegralPointD1.Result.Value);
            bt.a            = CalculateAValue(sigma, t);
            bt.Result.Value = CalculateBtK1(sigma, K, r, t, bt);

            return(bt);
        }
コード例 #3
0
        public async Task <IntegralFunction> CalculateAsync(int n, double T, double r, double sigma, double t, double S, double K, BtResult Btksi)
        {
            IntegralFunction integralFunction = new IntegralFunction();

            UnderIntegral[] underIntegral = new UnderIntegral[n];

            for (int i = 0; i < n; i++)
            {
                UnderIntegral ui = new UnderIntegral();

                ui.h               = (T / n);
                ui.ksi             = i * ui.h;
                ui.IntegralPointD1 = _integralPoints.CalculateIntegralPointD1(S, Btksi.Result.Value, r, sigma, t - ui.ksi);
                ui.IntegralPointD2 = _integralPoints.CalculateIntegralPointD2(ui.IntegralPointD1, sigma, t - ui.ksi);
                ui.Distribution    = _distribution.CumulativeDistribution(-ui.IntegralPointD2.Result.Value);
                ui.Result.Value    = CalculateUnderIntegral(r, K, t, ui.ksi, ui.Distribution) * ui.h;

                underIntegral[i] = ui;
                integralFunction.Result.Value += ui.Result.Value;
            }

            integralFunction.UnderIntegral = underIntegral;

            return(integralFunction);
        }
コード例 #4
0
        /// <summary>
        /// Vapnik Chervonenkis test.
        /// </summary>
        /// <param name="epsilon">The error we are willing to tolerate.</param>
        /// <param name="delta">The error probability we are willing to tolerate.</param>
        /// <param name="s">The samples to use for testing.</param>
        /// <param name="dist">The distribution we are testing.</param>
        public static void VapnikChervonenkisTest(double epsilon, double delta, IEnumerable <double> s, IUnivariateDistribution dist)
        {
            // Using VC-dimension, we can bound the probability of making an error when estimating empirical probability
            // distributions. We are using Theorem 2.41 in "All Of Nonparametric Statistics".
            // http://books.google.com/books?id=MRFlzQfRg7UC&lpg=PP1&dq=all%20of%20nonparametric%20statistics&pg=PA22#v=onepage&q=%22shatter%20coe%EF%AC%83cients%20do%20not%22&f=false .</para>
            // For intervals on the real line the VC-dimension is 2.
            double n = s.Count();

            Assert.Greater(n, Math.Ceiling(32.0 * Math.Log(16.0 / delta) / epsilon / epsilon));

            var histogram = new Histogram(s, NumberOfBuckets);

            for (var i = 0; i < NumberOfBuckets; i++)
            {
                var p  = dist.CumulativeDistribution(histogram[i].UpperBound) - dist.CumulativeDistribution(histogram[i].LowerBound);
                var pe = histogram[i].Count / n;
                Assert.Less(Math.Abs(p - pe), epsilon, dist.ToString());
            }
        }
コード例 #5
0
ファイル: Regression.cs プロジェクト: lulzzz/ARIMA
        private void Recompute(bool getBetaHatOnly)
        {
            int p = augmentedExplanatory.ColumnCount;
            int n = augmentedExplanatory.RowCount;

            Matrix <double> xt = augmentedExplanatory.Clone();

            xt.Transpose();
            Vector <double> xty = ((xt * dependent.ToColumnMatrix())).ToVector();
            Matrix <double> xtx = xt * augmentedExplanatory;

            Matrix <double> mxty = Matrix <double> .Build.Dense(xty.Count, 1);

            for (int i = 0; i < xty.Count; ++i)
            {
                mxty[i, 0] = xty[i];
            }

            BetaHat = Vector <double> .Build.Dense(p);

            //if (mxty.Norm2()==0)
            if (mxty.L2Norm() == 0)
            {
                return;
            }

            Matrix <double> bm = xtx.Solve(mxty);

            // .SolveRobust(mxty);

            for (int i = 0; i < p; ++i)
            {
                BetaHat[i] = bm[i, 0];
            }

            if (getBetaHatOnly)
            {
                return;
            }

            var fitted = (augmentedExplanatory * BetaHat.ToColumnMatrix()).ToVector();
            var resids = dependent - fitted;

            // now compute approximate p-values
            Sigma             = Math.Sqrt(resids.Variance()) * n / (n - p);
            BetaHatCovariance = Sigma * Sigma * xtx.Inverse();
            PValues           = Vector <double> .Build.Dense(augmentedExplanatory.ColumnCount);

            for (int i = 0; i < augmentedExplanatory.ColumnCount; ++i)
            {
                double x = Math.Abs(BetaHat[i]) / Math.Sqrt(BetaHatCovariance[i, i]);
                PValues[i] = 2 * (1 - stdNormal.CumulativeDistribution(x));
            }
        }
コード例 #6
0
        public static double TwoTailProbability(this IUnivariateDistribution nd, double value)
        {
            var result = nd.CumulativeDistribution(value);

            if (result > 0.5)
            {
                result = 1 - result;
            }
            result *= 2;
            return(result);
        }
コード例 #7
0
        /// <summary>
        /// Vapnik Chervonenkis test.
        /// </summary>
        /// <param name="epsilon">The error we are willing to tolerate.</param>
        /// <param name="delta">The error probability we are willing to tolerate.</param>
        /// <param name="s">The samples to use for testing.</param>
        /// <param name="dist">The distribution we are testing.</param>
        public static void VapnikChervonenkisTest(double epsilon, double delta, IEnumerable<double> s, IUnivariateDistribution dist)
        {
            // Using VC-dimension, we can bound the probability of making an error when estimating empirical probability
            // distributions. We are using Theorem 2.41 in "All Of Nonparametric Statistics".
            // http://books.google.com/books?id=MRFlzQfRg7UC&lpg=PP1&dq=all%20of%20nonparametric%20statistics&pg=PA22#v=onepage&q=%22shatter%20coe%EF%AC%83cients%20do%20not%22&f=false .</para>
            // For intervals on the real line the VC-dimension is 2.
            double n = s.Count();
            Assert.Greater(n, Math.Ceiling(32.0 * Math.Log(16.0 / delta) / epsilon / epsilon));

            var histogram = new Histogram(s, NumberOfBuckets);
            for (var i = 0; i < NumberOfBuckets; i++)
            {
                var p = dist.CumulativeDistribution(histogram[i].UpperBound) - dist.CumulativeDistribution(histogram[i].LowerBound);
                var pe = histogram[i].Count / n;
                Assert.Less(Math.Abs(p - pe), epsilon, dist.ToString());
            }
        }
コード例 #8
0
ファイル: Probability.cs プロジェクト: rodan123/EDDI
 /// <summary> Provide the cumulative probability that a value will be equal to or lower than that supplied </summary>
 public static decimal?CumulativeP(IUnivariateDistribution distribution, decimal?val)
 {
     return(val == null || distribution == null ? null : sanitiseCumulativeP((decimal?)distribution.CumulativeDistribution((double)val)));
 }