コード例 #1
0
 public string Convert(DataTable source, ITransformer transformer)
 {
     transformer = transformer ?? new NoTransformation();
     var objects = DataTableToObjectsConverter.Convert(source);
     var transformedObjects = objects.Select(transformer.Transform).ToArray();
     return serializer.Serialize(transformedObjects);
 }
コード例 #2
0
        /// <summary>
        /// Translates a code of asset written on TypeScript to JS-code
        /// </summary>
        /// <param name="asset">Asset</param>
        /// <param name="transformer">Transformer</param>
        /// <param name="isDebugMode">Flag that web application is in debug mode</param>
        /// <returns>Translated asset</returns>
        protected override IAsset TranslateAsset(IAsset asset, ITransformer transformer, bool isDebugMode)
        {
            IAsset processedAsset = InnerTranslateAsset<TypeScriptTranslator>(
                Constants.TranslatorName.TypeScriptTranslator, asset, transformer, isDebugMode);

            return processedAsset;
        }
コード例 #3
0
        /// <summary>
        /// Translates a code of asset written on EcmaScript2015 to JS-code
        /// </summary>
        /// <param name="asset">Asset</param>
        /// <param name="transformer">Transformer</param>
        /// <param name="isDebugMode">Flag that web application is in debug mode</param>
        /// <returns>Translated asset</returns>
        protected override IAsset TranslateAsset(IAsset asset, ITransformer transformer, bool isDebugMode)
        {
            IAsset processedAsset = InnerTranslateAsset<BabelJsTranslator>(
                AssetTypeCode.EcmaScript2015, asset, transformer, isDebugMode);

            return processedAsset;
        }
コード例 #4
0
 public UsersController(IUserRegisterer userRegisterer, IAuthTokenGenerator authTokenGenerator, IUserRetriever userRetriever, ITransformer transformer)
 {
     this.userRegisterer = userRegisterer;
     this.authTokenGenerator = authTokenGenerator;
     this.userRetriever = userRetriever;
     this.transformer = transformer;
 }
コード例 #5
0
ファイル: Replyer.cs プロジェクト: slung/fuzzyselector
        /// <summary>
        ///   Monitor pentru starea firului de execuţie de rezolvare a cererilor.
        /// </summary>
        //private ManualResetEvent tcpClientConnected;
        /// <param name="iTransformer">Transformatorul de cereri în răspuns</param>
        /// <param name="port">Portul pe care se ascultă</param>
        public Replyer(ITransformer iTransformer, int port)
        {
            this.iTransformer = iTransformer;

            TcpListener tcpl = new TcpListener(IPAddress.Any, port);

            tcpl.Start();

            while (true) {

                try {

                    while (!tcpl.Pending()) {

                        Thread.Sleep(1000);
                    }

                    TcpClient client = tcpl.AcceptTcpClient();

                    ThreadPool.QueueUserWorkItem(receiveTransformAndSendFeedback, client);
                }
                catch (ThreadAbortException) {

                    tcpl.Stop();

                    return;
                }
            }
        }
コード例 #6
0
        /// <summary>
        /// Initializes a new instance of the <see cref="AggregatedTransformer"/> class.
        /// </summary>
        /// <param name="children">The child transforms.</param>
        protected AggregatedTransformer(params ITransformer[] children)
        {
            if (children == null)
                children = new ITransformer[] { };

            transforms = children;
        }
コード例 #7
0
ファイル: FeatureTemplates.cs プロジェクト: pdonald/latvian
 public At(int positionOffset, ITransformer transformer)
 {
     this.offset = positionOffset;
     this.transformer = transformer;
     this.name = string.Format("{0} {1}", transformer.Name,
         (offset == 0 ? "" : (offset > 0 ? "+" : "-") + Math.Abs(offset))).Trim();
 }
コード例 #8
0
 public void Convert(DataTable source, ITransformer transformer, StreamWriter writer)
 {
     transformer = transformer ?? new NoTransformation();
     var objects = DataTableToObjectsConverter.Convert(source);
     var transformedObjects = objects.Select(transformer.Transform).ToArray();
     serializer.Serialize(transformedObjects, writer);
 }
コード例 #9
0
        /// <summary>
        /// Initializes a new instance of the <see cref="PredicatedTransformer"/> class.
        /// </summary>
        /// <param name="test">The test.</param>
        /// <param name="passesTransform">The passes transform.</param>
        /// <param name="failsTransform">The fails transform.</param>
        public PredicatedTransformer(Predicate<Int32> test, ITransformer passesTransform, ITransformer failsTransform)
        {
            Helpers.Arguments.NotNull(test, "test");
            Helpers.Arguments.NotNull(passesTransform, "passesTransform");
            Helpers.Arguments.NotNull(failsTransform, "failsTransform");

            _Test = test;
            _PassesTransform = passesTransform;
            _FailsTrasnform = failsTransform;
        }
コード例 #10
0
 public PlayedGamesController(
     IPlayedGameRetriever playedGameRetriever, 
     IExcelGenerator excelGenerator, 
     IPlayedGameSaver playedGameSaver, 
     IPlayedGameDeleter playedGameDeleter, ITransformer transformer)
 {
     this.playedGameRetriever = playedGameRetriever;
     this.excelGenerator = excelGenerator;
     this.playedGameSaver = playedGameSaver;
     this.playedGameDeleter = playedGameDeleter;
     this.transformer = transformer;
 }
コード例 #11
0
        public RowParser(int numberOfColumns, AdditionalColumnsProcessing additionalColumnsProcessing,
            ITransformer columnExploder)
        {
            if (columnExploder == null)
            {
                throw new ArgumentNullException("columnExploder");
            }

            _numberOfColumns = numberOfColumns;
            _additionalColumnsProcessing = additionalColumnsProcessing;
            _columnExploder = columnExploder;
        }
コード例 #12
0
ファイル: HomeController.cs プロジェクト: NemeStats/NemeStats
 public HomeController(
     IRecentPublicGamesRetriever recentPublicGamesRetriever,
     ITopGamingGroupsRetriever topGamingGroupsRetriever,
     ITrendingGamesRetriever trendingGamesRetriever,
     ITransformer transformer,            
     IRecentPlayerAchievementsUnlockedRetreiver recentPlayerAchievementsUnlockedRetreiver,
     IMapperFactory mapperFactory, IDataContext dataContext)        {
     _recentPublicGamesRetriever = recentPublicGamesRetriever;
     _topGamingGroupsRetriever = topGamingGroupsRetriever;
     _trendingGamesRetriever = trendingGamesRetriever;
     _transformer = transformer;
     _recentPlayerAchievementsUnlockedRetreiver = recentPlayerAchievementsUnlockedRetreiver;
     _mapperFactory = mapperFactory;
     }
コード例 #13
0
 public GameDefinitionController(IGameDefinitionRetriever gameDefinitionRetriever,
     ITrendingGamesRetriever trendingGamesRetriever,
     IGameDefinitionDetailsViewModelBuilder gameDefinitionTransformation,
     IGameDefinitionSaver gameDefinitionCreator,
     IBoardGameGeekApiClient boardGameGeekApiClient,
     IUserRetriever userRetriever,
     IBoardGameGeekGamesImporter boardGameGeekGamesImporter,
     ITransformer transformer)
 {
     _gameDefinitionRetriever = gameDefinitionRetriever;
     _trendingGamesRetriever = trendingGamesRetriever;
     _gameDefinitionTransformation = gameDefinitionTransformation;
     _gameDefinitionSaver = gameDefinitionCreator;
     _boardGameGeekApiClient = boardGameGeekApiClient;
     _userRetriever = userRetriever;
     _boardGameGeekGamesImporter = boardGameGeekGamesImporter;
     _transformer = transformer;
 }
コード例 #14
0
 private static void FileSystemWatcher_Changed(object sender, FileSystemEventArgs e)
 {
     Console.WriteLine("New model detected!");
     trainedModel = null;
     LoadModel();
 }
コード例 #15
0
        public static void IidSpikeDetectorPrediction()
        {
            // Create a new ML context, for ML.NET operations. It can be used for exception tracking and logging,
            // as well as the source of randomness.
            var ml = new MLContext();

            // Generate sample series data with a spike
            const int Size = 10;
            var       data = new List <IidSpikeData>(Size);

            for (int i = 0; i < Size / 2; i++)
            {
                data.Add(new IidSpikeData(5));
            }
            // This is a spike
            data.Add(new IidSpikeData(10));
            for (int i = 0; i < Size / 2; i++)
            {
                data.Add(new IidSpikeData(5));
            }

            // Convert data to IDataView.
            var dataView = ml.Data.ReadFromEnumerable(data);

            // Setup IidSpikeDetector arguments
            string outputColumnName = nameof(IidSpikePrediction.Prediction);
            string inputColumnName  = nameof(IidSpikeData.Value);
            // The transformed model.
            ITransformer model = ml.Transforms.IidChangePointEstimator(outputColumnName, inputColumnName, 95, Size).Fit(dataView);

            // Create a time series prediction engine from the model.
            var engine = model.CreateTimeSeriesPredictionFunction <IidSpikeData, IidSpikePrediction>(ml);

            for (int index = 0; index < 5; index++)
            {
                // Anomaly spike detection.
                var prediction = engine.Predict(new IidSpikeData(5));
                Console.WriteLine("{0}\t{1}\t{2:0.00}\t{3:0.00}", 5, prediction.Prediction[0],
                                  prediction.Prediction[1], prediction.Prediction[2]);
            }

            // Spike.
            var spikePrediction = engine.Predict(new IidSpikeData(10));

            Console.WriteLine("{0}\t{1}\t{2:0.00}\t{3:0.00}", 10, spikePrediction.Prediction[0],
                              spikePrediction.Prediction[1], spikePrediction.Prediction[2]);

            // Checkpoint the model.
            var modelPath = "temp.zip";

            engine.CheckPoint(ml, modelPath);

            // Load the model.
            using (var file = File.OpenRead(modelPath))
                model = TransformerChain.LoadFrom(ml, file);

            for (int index = 0; index < 5; index++)
            {
                // Anomaly spike detection.
                var prediction = engine.Predict(new IidSpikeData(5));
                Console.WriteLine("{0}\t{1}\t{2:0.00}\t{3:0.00}", 5, prediction.Prediction[0],
                                  prediction.Prediction[1], prediction.Prediction[2]);
            }

            // Data Alert   Score   P-Value
            // 5      0       5.00    0.50
            // 5      0       5.00    0.50
            // 5      0       5.00    0.50
            // 5      0       5.00    0.50
            // 5      0       5.00    0.50
            // 10     1      10.00    0.00  <-- alert is on, predicted spike (check-point model)
            // 5      0       5.00    0.26  <-- load model from disk.
            // 5      0       5.00    0.26
            // 5      0       5.00    0.50
            // 5      0       5.00    0.50
            // 5      0       5.00    0.50
        }
コード例 #16
0
ファイル: MlContextClass.cs プロジェクト: NenadR-dev/ML.NET
        /// <summary>
        /// Main method used for training the prediction model
        /// </summary>
        /// <returns>True if successful otherwise false if some error occures</returns>
        public bool TrainModel()
        {
            try
            {
                ProjectDirectory      = Path.GetFullPath(Path.Combine(AppContext.BaseDirectory, "../../../")); //set main directory path
                WorkspaceRelativePath = Path.Combine(ProjectDirectory, "workspace");                           // set workspace path
                AssetsRelativePath    = Path.Combine(ProjectDirectory, "assets");                              //set assets path
                ClearWorkspace();

                MLContext context = new MLContext();                                                                                          // Machine Learning Context
                IEnumerable <ImageData> images = ImageLoader.LoadImagesFromDirectory(folder: AssetsRelativePath, useFolderNameAsLabel: true); // Load images from assets dir

                IDataView imageData    = context.Data.LoadFromEnumerable(images);                                                             //fundamental pipeline
                IDataView shuffledData = context.Data.ShuffleRows(imageData);                                                                 // shuffle rows od the pipeline

                //Creates a Estimator which converts categorical values into numerical keys from InputModel class
                var preprocessingPipeline = context.Transforms.Conversion.MapValueToKey(
                    inputColumnName: "Label",
                    outputColumnName: "LabelAsKey")
                                            .Append(context.Transforms.LoadRawImageBytes(
                                                        outputColumnName: "Image",
                                                        imageFolder: AssetsRelativePath,
                                                        inputColumnName: "ImagePath"));

                //Pre processsed data used for training/testing/validating the model
                IDataView preProcessedData = preprocessingPipeline
                                             .Fit(shuffledData)
                                             .Transform(shuffledData);

                //Declare to split into 3 categories train / test / validate
                TrainTestData trainSplit          = context.Data.TrainTestSplit(data: preProcessedData, testFraction: 0.3);
                TrainTestData validationTestSplit = context.Data.TrainTestSplit(trainSplit.TestSet);

                IDataView trainSet      = trainSplit.TrainSet;          // get the training set
                IDataView validationSet = validationTestSplit.TrainSet; // get the validation set
                IDataView testSet       = validationTestSplit.TestSet;  // get the test set

                //Image trainer options used for training the image classification model
                var classifierOptions = new ImageClassificationTrainer.Options()
                {
                    FeatureColumnName = "Image",
                    LabelColumnName   = "LabelAsKey",
                    ValidationSet     = validationSet,
                    Arch            = ImageClassificationTrainer.Architecture.ResnetV2101,
                    MetricsCallback = (metrics) => Console.WriteLine(metrics),
                    TestOnTrainSet  = false,
                    Epoch           = 100,
                    BatchSize       = 10,
                    ReuseTrainSetBottleneckCachedValues      = true,
                    ReuseValidationSetBottleneckCachedValues = true,
                    WorkspacePath = WorkspaceRelativePath
                };

                //create a training pipeline and append output of prediction as PredictedLabel from OutputModel class
                var trainingPipeline = context.MulticlassClassification.Trainers.ImageClassification(classifierOptions)
                                       .Append(context.Transforms.Conversion.MapKeyToValue("PredictedLabel"));

                //Main trained model used for making image predictions
                ITransformer trainedModel = trainingPipeline.Fit(trainSet);

                //Prediction engine used for prediction. Created from the trained model
                PredictionEngine = context.Model.CreatePredictionEngine <InputModel, OutputModel>(trainedModel);

                return(true);
            }
            catch (Exception e)
            {
                Console.WriteLine(e.Message);
                return(false);
            }
        }
コード例 #17
0
 public ITransformer LoadModel(string modelPath)
 {
     _trainedModel = _mlContext.Model.Load(modelPath, out var modelInputSchema);
     return(_trainedModel);
 }
コード例 #18
0
ファイル: LeapSpace.cs プロジェクト: momentchan/VFX-Projects
 protected abstract void UpdateTransformer(ITransformer transformer, ITransformer parent);
コード例 #19
0
ファイル: Analyzer.cs プロジェクト: gophlb/FraudPrevention
 public Analyzer(IReader reader, ITransformer transformer)
 {
     this.reader = reader;
     this.transformer = transformer;
 }
コード例 #20
0
ファイル: Evaluator.cs プロジェクト: cmu-sei/GHOSTS-SPECTRE
 public static void SaveModel(MLContext mlContext, DataViewSchema trainingDataViewSchema, ITransformer model)
 {
     results.Add("Saving the model to a file...");
     mlContext.Model.Save(model, trainingDataViewSchema, Config.ModelFile);
 }
コード例 #21
0
        public static void Train(string filePathTrain, string filePathTest, string fileMLTrainedModel)
        {
            try
            {
                // Skip the training of the model if model already exists.
                if (System.IO.File.Exists(fileMLTrainedModel))
                {
                    return;
                }

                /**
                 * Copied the following code chunk from the official Github of ML.NET
                 *
                 * https://github.com/dotnet/machinelearning-samples/blob/master/samples/csharp/getting-started/MulticlassClassification_MNIST/MNIST/Program.cs
                 */

                // STEP 1: Common data loading configuration
                var trainData = mlContext.Data.LoadFromTextFile(path: filePathTrain,
                                                                columns: new[]
                {
                    new TextLoader.Column(nameof(InputData.PixelValues), DataKind.Single, 0, 63),
                    new TextLoader.Column("Number", DataKind.Single, 64)
                },
                                                                hasHeader: false,
                                                                separatorChar: ','
                                                                );


                var testData = mlContext.Data.LoadFromTextFile(path: filePathTest,
                                                               columns: new[]
                {
                    new TextLoader.Column(nameof(InputData.PixelValues), DataKind.Single, 0, 63),
                    new TextLoader.Column("Number", DataKind.Single, 64)
                },
                                                               hasHeader: false,
                                                               separatorChar: ','
                                                               );

                // STEP 2: Common data process configuration with pipeline data transformations
                // Use in-memory cache for small/medium datasets to lower training time. Do NOT use it (remove .AppendCacheCheckpoint()) when handling very large datasets.
                var dataProcessPipeline = mlContext.Transforms.Conversion.MapValueToKey("Label", "Number", keyOrdinality: ValueToKeyMappingEstimator.KeyOrdinality.ByValue).
                                          Append(mlContext.Transforms.Concatenate("Features", nameof(InputData.PixelValues)).AppendCacheCheckpoint(mlContext));

                // STEP 3: Set the training algorithm, then create and config the modelBuilder
                var trainer          = mlContext.MulticlassClassification.Trainers.SdcaMaximumEntropy(labelColumnName: "Label", featureColumnName: "Features");
                var trainingPipeline = dataProcessPipeline.Append(trainer).Append(mlContext.Transforms.Conversion.MapKeyToValue("Number", "Label"));

                // STEP 4: Train the model fitting to the DataSet

                Console.WriteLine("=============== Training the model ===============");
                ITransformer trainedModel = trainingPipeline.Fit(trainData);

                Console.WriteLine("===== Evaluating Model's accuracy with Test data =====");
                var predictions = trainedModel.Transform(testData);
                var metrics     = mlContext.MulticlassClassification.Evaluate(data: predictions, labelColumnName: "Number", scoreColumnName: "Score");

                ///Common.ConsoleHelper.PrintMultiClassClassificationMetrics(trainer.ToString(), metrics);

                mlContext.Model.Save(trainedModel, trainData.Schema, fileMLTrainedModel);

                Console.WriteLine("The model is saved to {0}", fileMLTrainedModel);

                /*
                 * End Copy
                 */
            }
            catch (Exception e)
            {
                Console.WriteLine("ERROR " + e.Message);
            }
        }
コード例 #22
0
 /// <summary>
 /// Save the model to the stream.
 /// </summary>
 /// <param name="model">The trained model to be saved.</param>
 /// <param name="stream">A writeable, seekable stream to save to.</param>
 public void Save(ITransformer model, Stream stream) => model.SaveTo(_env, stream);
コード例 #23
0
 public InnerTransformHandler(ITransformer transformer)
 {
     _transformer = transformer;
 }
コード例 #24
0
ファイル: FeatureTemplates.cs プロジェクト: pdonald/latvian
 public Current(ITransformer transformer)
 {
     this.name = "Token " + transformer.Name;
     this.transformer = transformer;
 }
コード例 #25
0
 public GameDefinitionSummaryViewModelBuilder(ITransformer transformer, IWeightTierCalculator weightTierCalculator)
 {
     this._transformer = transformer;
     _weightTierCalculator = weightTierCalculator;
 }
コード例 #26
0
ファイル: FeatureTemplates.cs プロジェクト: pdonald/latvian
 public Next(int pos, ITransformer transformer)
     : base(pos, transformer)
 {
     if (pos <= 0)
         throw new ArgumentOutOfRangeException();
 }
コード例 #27
0
ファイル: FeatureTemplates.cs プロジェクト: pdonald/latvian
 public Next(ITransformer transformer)
     : this(1, transformer)
 {
 }
コード例 #28
0
        // This example creates a time series (list of Data with the i-th element corresponding to the i-th time slot).
        // IidChangePointDetector is applied then to identify points where data distribution changed using time series
        // prediction engine. The engine is checkpointed and then loaded back from disk into memory and used for prediction.
        public static void IidChangePointDetectorPrediction()
        {
            // Create a new ML context, for ML.NET operations. It can be used for exception tracking and logging,
            // as well as the source of randomness.
            var ml = new MLContext();

            // Generate sample series data with a change
            const int Size = 16;
            var       data = new List <IidChangePointData>(Size);

            for (int i = 0; i < Size / 2; i++)
            {
                data.Add(new IidChangePointData(5));
            }
            // This is a change point
            for (int i = 0; i < Size / 2; i++)
            {
                data.Add(new IidChangePointData(7));
            }

            // Convert data to IDataView.
            var dataView = ml.Data.ReadFromEnumerable(data);

            // Setup IidSpikeDetector arguments
            string outputColumnName = nameof(ChangePointPrediction.Prediction);
            string inputColumnName  = nameof(IidChangePointData.Value);

            // Time Series model.
            ITransformer model = ml.Transforms.IidChangePointEstimator(outputColumnName, inputColumnName, 95, Size / 4).Fit(dataView);

            // Create a time series prediction engine from the model.
            var engine = model.CreateTimeSeriesPredictionFunction <IidChangePointData, ChangePointPrediction>(ml);

            for (int index = 0; index < 8; index++)
            {
                // Anomaly change point detection.
                var prediction = engine.Predict(new IidChangePointData(5));
                Console.WriteLine("{0}\t{1}\t{2:0.00}\t{3:0.00}\t{4:0.00}", 5, prediction.Prediction[0],
                                  prediction.Prediction[1], prediction.Prediction[2], prediction.Prediction[3]);
            }

            // Change point
            var changePointPrediction = engine.Predict(new IidChangePointData(7));

            Console.WriteLine("{0}\t{1}\t{2:0.00}\t{3:0.00}\t{4:0.00}", 7, changePointPrediction.Prediction[0],
                              changePointPrediction.Prediction[1], changePointPrediction.Prediction[2], changePointPrediction.Prediction[3]);

            // Checkpoint the model.
            var modelPath = "temp.zip";

            engine.CheckPoint(ml, modelPath);

            // Reference to current time series engine because in the next step "engine" will point to the
            // checkpointed model being loaded from disk.
            var timeseries1 = engine;

            // Load the model.
            using (var file = File.OpenRead(modelPath))
                model = TransformerChain.LoadFrom(ml, file);

            // Create a time series prediction engine from the checkpointed model.
            engine = model.CreateTimeSeriesPredictionFunction <IidChangePointData, ChangePointPrediction>(ml);
            for (int index = 0; index < 8; index++)
            {
                // Anomaly change point detection.
                var prediction = engine.Predict(new IidChangePointData(7));
                Console.WriteLine("{0}\t{1}\t{2:0.00}\t{3:0.00}\t{4:0.00}", 7, prediction.Prediction[0],
                                  prediction.Prediction[1], prediction.Prediction[2], prediction.Prediction[3]);
            }

            // Prediction from the original time series engine should match the prediction from
            // check pointed model.
            engine = timeseries1;
            for (int index = 0; index < 8; index++)
            {
                // Anomaly change point detection.
                var prediction = engine.Predict(new IidChangePointData(7));
                Console.WriteLine("{0}\t{1}\t{2:0.00}\t{3:0.00}\t{4:0.00}", 7, prediction.Prediction[0],
                                  prediction.Prediction[1], prediction.Prediction[2], prediction.Prediction[3]);
            }

            // Data Alert      Score   P-Value Martingale value
            // 5       0       5.00    0.50    0.00       <-- Time Series 1.
            // 5       0       5.00    0.50    0.00
            // 5       0       5.00    0.50    0.00
            // 5       0       5.00    0.50    0.00
            // 5       0       5.00    0.50    0.00
            // 5       0       5.00    0.50    0.00
            // 5       0       5.00    0.50    0.00
            // 5       0       5.00    0.50    0.00
            // 7       1       7.00    0.00    10298.67   <-- alert is on, predicted changepoint (and model is checkpointed).

            // 7       0       7.00    0.13    33950.16   <-- Time Series 2 : Model loaded back from disk and prediction is made.
            // 7       0       7.00    0.26    60866.34
            // 7       0       7.00    0.38    78362.04
            // 7       0       7.00    0.50    0.01
            // 7       0       7.00    0.50    0.00
            // 7       0       7.00    0.50    0.00
            // 7       0       7.00    0.50    0.00

            // 7       0       7.00    0.13    33950.16   <-- Time Series 1 and prediction is made.
            // 7       0       7.00    0.26    60866.34
            // 7       0       7.00    0.38    78362.04
            // 7       0       7.00    0.50    0.01
            // 7       0       7.00    0.50    0.00
            // 7       0       7.00    0.50    0.00
            // 7       0       7.00    0.50    0.00
        }
コード例 #29
0
ファイル: Evaluator.cs プロジェクト: cmu-sei/GHOSTS-SPECTRE
        public static void UseModelForSinglePrediction(MLContext mlContext, ITransformer model)
        {
            OsExtensions.WriteOver($"Processing predictions, pass {Config.CurrentIteration}");
            var predictionEngine = mlContext.Model.CreatePredictionEngine <BrowseHistory, BrowsePrediction>(model);

            foreach (var agent in Agents)
            {
                var recs = new List <BrowsePrediction>();
                for (var i = 1; i < 500000; i++)
                {
                    var testInput = new BrowseHistory {
                        userId = agent.Id, itemId = i
                    };

                    var itemPrediction = predictionEngine.Predict(testInput);

                    itemPrediction.Iteration = Config.CurrentIteration;
                    itemPrediction.UserId    = testInput.userId;
                    itemPrediction.ItemId    = testInput.itemId;

                    if (Math.Round(itemPrediction.Score, 1) > 3.5)
                    {
                        var site = Sites.FirstOrDefault(o => o.Id == itemPrediction.ItemId);

                        if (site == null)
                        {
                            continue;
                        }

                        if (agent.Preference == site.Category)
                        {
                            // add matching sites with positive correlation
                            itemPrediction.Score = 5;
                            recs.Add(itemPrediction);
                            //results.Add($"Item {testInput.itemId} is recommended for user {testInput.userId} at {Math.Round(itemPrediction.Score, 1)}");
                        }
                        else
                        {
                            // add but rate as poor match
                            itemPrediction.Score = 1;
                            recs.Add(itemPrediction);
                        }
                    }
                }

                using (StreamWriter w = File.AppendText(Config.OutputFile))
                {
                    //var rnd = new Random();
                    //var choices = recs.OrderBy(x => rnd.Next()).Take(25);
                    var choices = recs;

                    foreach (var rec in choices)
                    {
                        TimeSpan t = DateTime.UtcNow - new DateTime(1970, 1, 1);
                        int      secondsSinceEpoch = (int)t.TotalSeconds;

                        w.WriteLine($"{rec.UserId},{rec.ItemId},{Math.Round(rec.Score, 1)},{secondsSinceEpoch},{rec.Iteration}"); //user_id,item_id,timestamp
                    }
                }
            }
        }
コード例 #30
0
        public XTablePortable(ITable <IData, IData> table, ITransformer <TKey, IData> keyTransformer = null, ITransformer <TRecord, IData> recordTransformer = null)
        {
            if (table == null)
            {
                throw new ArgumentNullException("table");
            }

            Table = table;

            if (keyTransformer == null)
            {
                keyTransformer = new DataTransformer <TKey>(table.Descriptor.KeyType);
            }

            if (recordTransformer == null)
            {
                recordTransformer = new DataTransformer <TRecord>(table.Descriptor.RecordType);
            }

            KeyTransformer    = keyTransformer;
            RecordTransformer = recordTransformer;
        }
コード例 #31
0
        public GameDefinitionDetailsViewModelBuilder(IPlayedGameDetailsViewModelBuilder playedGameDetailsViewModelBuilder, ITransformer transformer)
        {
            _playedGameDetailsViewModelBuilder = playedGameDetailsViewModelBuilder;
            _transformer = transformer;

        }
コード例 #32
0
ファイル: ParserClasses.cs プロジェクト: sunny597/C-Compiler
 public TransformerThenParser(ITransformer <S, R1> transformer, IParser <R2> parser)
 {
     this.Transformer = transformer;
     this.Parser      = parser;
 }
コード例 #33
0
ファイル: FeatureTemplates.cs プロジェクト: pdonald/latvian
 public Prev(int pos, ITransformer transformer)
     : base(-Math.Abs(pos), transformer)
 {
     if (pos == 0)
         throw new ArgumentOutOfRangeException();
 }
コード例 #34
0
ファイル: ParserClasses.cs プロジェクト: sunny597/C-Compiler
 public TransformerThenConsumer(ITransformer <S, R> transformer, IConsumer consumer)
 {
     this.Transformer = transformer;
     this.Consumer    = consumer;
 }
コード例 #35
0
 public IEnumerable <float[]> Score(ITransformer model, IDataView data)
 {
     return(PredictDataUsingModel(data, model));
 }
コード例 #36
0
ファイル: ParserClasses.cs プロジェクト: sunny597/C-Compiler
 public TransformerThenTransformer(ITransformer <S, I> firstTransformer, ITransformer <I, R> secondTransformer)
 {
     this.FirstTransformer  = firstTransformer;
     this.SecondTransformer = secondTransformer;
 }
コード例 #37
0
 protected override IAsset TranslateAssetCore(IAsset asset, ITransformer transformer, bool isDebugMode)
 {
     return(InnerTranslateAsset <LessTranslator>("LessTranslator", asset, transformer, isDebugMode));
 }
コード例 #38
0
ファイル: ParserClasses.cs プロジェクト: sunny597/C-Compiler
 public void Is(ITransformer <S, R> transformer)
 {
     this.Transformer.Value = transformer;
 }
コード例 #39
0
        private static void Main(string[] args)
        {
            //Create the MLContext to share across components for deterministic results
            MLContext mlContext = new MLContext(seed: 1);  //Seed set to any number so you have a deterministic environment

            // STEP 1: Common data loading configuration
            IDataView fullData = mlContext.Data.LoadFromTextFile(path: DataPath,
                                                                 columns: new[]
            {
                new TextLoader.Column("Label", DataKind.Single, 0),
                new TextLoader.Column(nameof(IrisData.SepalLength), DataKind.Single, 1),
                new TextLoader.Column(nameof(IrisData.SepalWidth), DataKind.Single, 2),
                new TextLoader.Column(nameof(IrisData.PetalLength), DataKind.Single, 3),
                new TextLoader.Column(nameof(IrisData.PetalWidth), DataKind.Single, 4),
            },
                                                                 hasHeader: true,
                                                                 separatorChar: '\t');

            //Split dataset in two parts: TrainingDataset (80%) and TestDataset (20%)
            DataOperationsCatalog.TrainTestData trainTestData = mlContext.Data.TrainTestSplit(fullData, testFraction: 0.2);
            trainingDataView = trainTestData.TrainSet;
            testingDataView  = trainTestData.TestSet;

            //STEP 2: Process data transformations in pipeline
            var dataProcessPipeline = mlContext.Transforms.Concatenate("Features", nameof(IrisData.SepalLength), nameof(IrisData.SepalWidth), nameof(IrisData.PetalLength), nameof(IrisData.PetalWidth));

            // (Optional) Peek data in training DataView after applying the ProcessPipeline's transformations
            Common.ConsoleHelper.PeekDataViewInConsole(mlContext, trainingDataView, dataProcessPipeline, 10);
            Common.ConsoleHelper.PeekVectorColumnDataInConsole(mlContext, "Features", trainingDataView, dataProcessPipeline, 10);

            // STEP 3: Create and train the model
            var trainer          = mlContext.Clustering.Trainers.KMeans(featureColumnName: "Features", numberOfClusters: 3);
            var trainingPipeline = dataProcessPipeline.Append(trainer);
            var trainedModel     = trainingPipeline.Fit(trainingDataView);

            // STEP4: Evaluate accuracy of the model
            IDataView predictions = trainedModel.Transform(testingDataView);
            var       metrics     = mlContext.Clustering.Evaluate(predictions, scoreColumnName: "Score", featureColumnName: "Features");

            ConsoleHelper.PrintClusteringMetrics(trainer.ToString(), metrics);

            // STEP5: Save/persist the model as a .ZIP file
            using (var fs = new FileStream(ModelPath, FileMode.Create, FileAccess.Write, FileShare.Write))
                mlContext.Model.Save(trainedModel, trainingDataView.Schema, fs);

            Console.WriteLine("=============== End of training process ===============");

            Console.WriteLine("=============== Predict a cluster for a single case (Single Iris data sample) ===============");

            // Test with one sample text
            var sampleIrisData = new IrisData()
            {
                SepalLength = 3.3f,
                SepalWidth  = 1.6f,
                PetalLength = 0.2f,
                PetalWidth  = 5.1f,
            };

            using (var stream = new FileStream(ModelPath, FileMode.Open, FileAccess.Read, FileShare.Read))
            {
                ITransformer model = mlContext.Model.Load(stream, out var modelInputSchema);
                // Create prediction engine related to the loaded trained model
                var predEngine = mlContext.Model.CreatePredictionEngine <IrisData, IrisPrediction>(model);

                //Score
                var resultprediction = predEngine.Predict(sampleIrisData);

                Console.WriteLine($"Cluster assigned for setosa flowers:" + resultprediction.SelectedClusterId);
            }

            Console.WriteLine("=============== End of process, hit any key to finish ===============");
            Console.ReadKey();
        }
コード例 #40
0
ファイル: ParserClasses.cs プロジェクト: sunny597/C-Compiler
 public OptionalTransformer(ITransformer <R, R> transformer)
 {
     this.Transformer = transformer;
 }
コード例 #41
0
        //public double getProbabilityThreshold()
        //{
        //    return lrModel.getThreshold();
        //}

        public void setLogisticRegressionModel(ITransformer lrm)
        {
            lrModel = lrm;
        }
コード例 #42
0
 public void CreateTransformer()
 {
     XmlSerializerTransformer xmlTransformer = new XmlSerializerTransformer();
     // just a fake out to test the transformer
     RuntimeConfigurationView configurationView = new RuntimeConfigurationView(Context);
     xmlTransformer.CurrentSectionName = "ApplConfig1";
     xmlTransformer.Initialize(configurationView);
     transformer = xmlTransformer;
 }
コード例 #43
0
 private static void LoadModel()
 {
     mlContext    = new MLContext(1);
     trainedModel = mlContext.Model.Load(modelFileName, out var modelInputSchema);
     predEngine   = mlContext.Model.CreatePredictionEngine <SentimentIssue, SentimentPrediction>(trainedModel);
 }
コード例 #44
0
 public EmployeeRepository(ITransformer<EmployeeModel, Employee> transformer)
 {
     this.transformer = transformer;
 }
コード例 #45
0
ファイル: Evaluator.cs プロジェクト: cmu-sei/GHOSTS-SPECTRE
 public static void EvaluateModel(MLContext mlContext, IDataView testDataView, ITransformer model)
 {
     using (StreamWriter w = File.AppendText(Config.StatsFile))
     {
         results.Add("Evaluating model...");
         var prediction = model.Transform(testDataView);
         var metrics    = mlContext.Regression.Evaluate(prediction, labelColumnName: "Label", scoreColumnName: "Score");
         results.Add("Root Mean Squared Error : " + metrics.RootMeanSquaredError.ToString());
         results.Add("RSquared: " + metrics.RSquared.ToString());
         w.WriteLine($"{Config.CurrentIteration},{metrics.RootMeanSquaredError},{metrics.RSquared},{metrics.LossFunction},{metrics.MeanAbsoluteError},{metrics.MeanSquaredError}");
     }
 }
コード例 #46
0
 public HtmlAwareMultiTransformer(ITransformer delegateTransformer)
 {
     this.delegateTransformer = delegateTransformer;
 }
コード例 #47
0
ファイル: Evaluator.cs プロジェクト: cmu-sei/GHOSTS-SPECTRE
        public static BrowseRecommendationsResults Run(Configuration config = null)
        {
            if (config == null)
            {
                Config = new Configuration();
            }
            else
            {
                Config = config;
            }

            var stopwatch = System.Diagnostics.Stopwatch.StartNew();

            results.Add($"Building test {Config.TestNumber} directories...");
            if (!Directory.Exists(Configuration.BaseDirectory))
            {
                Directory.CreateDirectory(Configuration.BaseDirectory);
            }
            if (!Directory.Exists($"{Configuration.BaseDirectory}/{Config.TestNumber}"))
            {
                Directory.CreateDirectory($"{Configuration.BaseDirectory}/{Config.TestNumber}");
            }
            if (!Directory.Exists($"{Configuration.BaseDirectory}/dependencies"))
            {
                Directory.CreateDirectory($"{Configuration.BaseDirectory}/dependencies");
            }

            if (!File.Exists(Config.AgentsFile))
            {
                results.Add("Generating agents file...");
                Generators.GenerateAgentsFile(Config);
            }
            if (!File.Exists(Config.SitesFile))
            {
                results.Add("Generating sites file...");
                Generators.GenerateSitesFile(Config);
            }

            if (!File.Exists(Config.InputFilePref) || !File.Exists(Config.InputFileRand))
            {
                results.Add("Generating browse history files...");
                Generators.GenerateNewBrowseFiles(Config);
            }

            var typesToProcess = new[] { "pref", "rand" };

            foreach (var typeToProcess in typesToProcess)
            {
                Config.CurrentType = typeToProcess;
                results.Add($"Initializing {Config.CurrentType}...");

                results.Add("Extracting test file...");
                if (!File.Exists(Config.TestFile))
                {
                    //build test file from input
                    var lines = File.ReadAllLines(Config.InputFile);

                    var numberForTest = (lines.Length * Config.PercentOfDataIsTest);
                    var linesToRemove = new List <int>();
                    using (StreamWriter w = File.AppendText(Config.TestFile))
                    {
                        w.WriteLine("user_id,item_id,rating,timestamp,iteration".ToLower());

                        int recordsCopied = 0;
                        while (recordsCopied < numberForTest)
                        {
                            var r = new Random();
                            var randomLineNumber = r.Next(1, lines.Length - 1);
                            while (linesToRemove.Contains(randomLineNumber))
                            {
                                randomLineNumber = r.Next(1, lines.Length - 1);
                            }
                            var line = lines[randomLineNumber];
                            w.WriteLine(line);
                            linesToRemove.Add(randomLineNumber);
                            recordsCopied++;
                        }
                    }

                    //remove test data from input file
                    if (File.Exists(Config.InputFile + ".backup"))
                    {
                        File.Delete(Config.InputFile + ".backup");
                    }
                    File.Move(Config.InputFile, Config.InputFile + ".backup");
                    using (StreamWriter w = File.AppendText(Config.InputFile))
                    {
                        w.WriteLine("user_id,item_id,rating,timestamp,iteration".ToLower());

                        int i = -1;
                        foreach (var line in lines)
                        {
                            i++;
                            if (i == 0 || linesToRemove.Contains(i))
                            {
                                continue;
                            }
                            w.WriteLine(line);
                        }
                    }
                }

                MLContext mlContext = new MLContext();
                (IDataView trainingDataView, IDataView testDataView) = LoadData(mlContext);

                Agents = new List <Agent>();

                using (var fileStream = File.OpenRead(Config.AgentsFile))
                {
                    using (var streamReader = new StreamReader(fileStream, Encoding.UTF8, true, 128))
                    {
                        var    i = -1;
                        String line;
                        while ((line = streamReader.ReadLine()) != null)
                        {
                            i++;
                            if (i == 0)
                            {
                                continue;
                            }
                            var o = line.Split(Convert.ToChar(","));
                            Agents.Add(new Agent(Convert.ToInt32(o[0]), o[1], Convert.ToInt32(Convert.ToDouble(o[2]))));
                        }
                    }
                }

                Sites = new List <Site>();
                using (var fileStream = File.OpenRead(Config.SitesFile))
                {
                    using (var streamReader = new StreamReader(fileStream, Encoding.UTF8, true, 128))
                    {
                        String line;
                        while ((line = streamReader.ReadLine()) != null)
                        {
                            var o = line.Split(Convert.ToChar(","));
                            try
                            {
                                Sites.Add(new Site(Convert.ToInt32(o[0]), o[1]));
                            }
                            catch { } //lazy, don't @ me
                        }
                    }
                }

                results.Add($"Initializing model and associated requirements...");
                if (!File.Exists(Config.ModelFile))
                {
                    ITransformer model = BuildAndTrainModel(mlContext, trainingDataView);
                    EvaluateModel(mlContext, testDataView, model);
                    UseModelForSinglePrediction(mlContext, model);
                    SaveModel(mlContext, trainingDataView.Schema, model);
                }


                /*
                 * results.Add("=============== Running Experiment ===============");
                 * var experimentSettings = new RecommendationExperimentSettings();
                 * experimentSettings.MaxExperimentTimeInSeconds = 3600;
                 * experimentSettings.OptimizingMetric = RegressionMetric.MeanSquaredError;
                 * var experiment = mlContext.Auto().CreateRecommendationExperiment(experimentSettings);
                 * ExperimentResult<RegressionMetrics> experimentResult = mlContext.Auto()
                 *  .CreateRecommendationExperiment(new RecommendationExperimentSettings() { MaxExperimentTimeInSeconds = 3600 })
                 *  .Execute(trainingDataView, testDataView,
                 *      new ColumnInformation()
                 *      {
                 *          LabelColumnName = "Label",
                 *          UserIdColumnName = "userId",
                 *          ItemIdColumnName = "itemId"
                 *      });
                 * // STEP 3: Print metric from best model
                 * RunDetail<RegressionMetrics> bestRun = experimentResult.BestRun;
                 * results.Add($"Total models produced: {experimentResult.RunDetails.Count()}");
                 * results.Add($"Best model's trainer: {bestRun.TrainerName}");
                 * results.Add($"Metrics of best model from validation data --");
                 * PrintMetrics(bestRun.ValidationMetrics);
                 * Environment.Exit(1);
                 */


                //now that we have a model, we'll loop through that model x times - same model, growing dataset over iteration
                for (var i = 1; i < Config.Iterations; i++)
                {
                    Config.CurrentIteration = i;
                    //Define DataViewSchema for data preparation pipeline and trained model
                    DataViewSchema modelSchema;
                    // Load trained model
                    var trainedModel = mlContext.Model.Load(Config.ModelFile, out modelSchema);

                    // Load data preparation pipeline and trained model
                    UseModelForSinglePrediction(mlContext, trainedModel);
                }

                results.Add("Generating final reports...");
                Generators.GenerateReportFile(Config);

                results.Add($"{Config.CurrentType} completed in {stopwatch.ElapsedMilliseconds} ms");
            }

            stopwatch.Stop();
            results.Add($"Test completed in {stopwatch.ElapsedMilliseconds} ms");

            //load result file
            var recommendations = RecommendationsService.Load(config.ResultFileOut);
            var browseRecommendationsResults = new BrowseRecommendationsResults {
                JobOutput = results, Recommendations = recommendations
            };

            return(browseRecommendationsResults);
        }
コード例 #48
0
        public static float GetPrediction(ITransformer trainedModel, Employee employee)
        {
            var predictionEngine = MlContext.Model.CreatePredictionEngine <EmployeeDto, SalaryPrediction>(trainedModel);

            return(GetPrediction(predictionEngine, employee));
        }
コード例 #49
0
        public CSharpOperation(string outKey, string outType, string script, Dictionary<string, Script> scripts, IParameters parameters)
            : base(string.Empty, outKey) {

            var csc = new CSharpCodeProvider();
            var ca = Assembly.GetExecutingAssembly();
            var cp = new CompilerParameters { GenerateInMemory = true };
            var testRow = new Row();

            cp.ReferencedAssemblies.Add("System.dll");
            cp.ReferencedAssemblies.Add("System.Core.dll");
            cp.ReferencedAssemblies.Add("mscorlib.dll");
            cp.ReferencedAssemblies.Add(ca.Location);

            var scriptBuilder = new StringBuilder(string.Empty);
            foreach (var s in scripts) {
                scriptBuilder.AppendLine($"// {s.Value.Name} script");
                scriptBuilder.AppendLine(s.Value.Content);
            }

            var castBuilder = new StringBuilder(string.Empty);

            if (!parameters.Any()) {
                castBuilder.AppendLine(string.Format("{1} {0} = ({1}) row[\"{0}\"];", OutKey, Common.ToSystemType(outType)));
                testRow[OutKey] = new DefaultFactory(Logger).Convert(null, outType);
            } else {
                var map = Common.GetLiteral();
                foreach (var pair in parameters) {
                    if (pair.Value.HasValue()) {
                        castBuilder.AppendLine($"{Common.ToSystemType(pair.Value.SimpleType)} {pair.Value.Name} = {map[pair.Value.SimpleType](pair.Value.Value)};");
                    } else {
                        castBuilder.AppendLine(string.Format("{1} {0} = ({1}) row[\"{0}\"];", pair.Value.Name, Common.ToSystemType(pair.Value.SimpleType)));
                    }
                    testRow[pair.Value.Name] = new DefaultFactory(Logger).Convert(null, pair.Value.SimpleType);
                }
            }

            var code = $@"using System;
using System.Text;
using System.Collections.Generic;
using System.Linq;
using Transformalize.Operations.Transform;
using Transformalize.Libs.Rhino.Etl;

{scriptBuilder}

public class Transformer : ITransformer
{{
    public object Transform(Row row)
    {{
        {castBuilder}
        //User's script
        {script}
    }}
}}";

            Logger.EntityDebug(EntityName, "Compiling this code:");
            Logger.EntityDebug(EntityName, code);

            var res = csc.CompileAssemblyFromSource(
                cp,
                code
            );

            if (res.Errors.Count == 0) {
                var type = res.CompiledAssembly.GetType("Transformer");
                _transformer = (ITransformer)Activator.CreateInstance(type);
                try {
                    var test = _transformer.Transform(testRow);
                    Logger.EntityDebug(EntityName, "CSharp transform compiled and passed test. {0}", test);
                } catch (Exception e) {
                    Logger.EntityDebug(EntityName, "CSharp transform compiled but failed test. {0}", e.Message);
                    Logger.EntityDebug(EntityName, e.StackTrace);
                }
            } else {
                foreach (var error in res.Errors) {
                    Logger.EntityError(EntityName, error.ToString());
                }
                throw new TransformalizeException(Logger, EntityName, "Failed to compile code. {0}", code);
            }

            Name = $"CSharpOperation ({outKey})";
        }
コード例 #50
0
        public static IEnumerable <KeyValuePair <Employee, float> > GetPrediction(ITransformer trainedModel, IEnumerable <Employee> employees)
        {
            var predictionEngine = MlContext.Model.CreatePredictionEngine <EmployeeDto, SalaryPrediction>(trainedModel);

            return(employees.Select(e => new KeyValuePair <Employee, float>(e, GetPrediction(predictionEngine, e))));
        }
コード例 #51
0
 public PlayerStatsController(IPlayerRetriever playerRetriever, ITransformer transformer)
 {
     this.playerRetriever = playerRetriever;
     this.transformer = transformer;
 }
コード例 #52
0
 internal XFindIndex(DynamicDelegate f, ITransformer xf) : base(f, xf)
 {
     idx = -1;
 }
コード例 #53
0
ファイル: ParserClasses.cs プロジェクト: sunny597/C-Compiler
 public ParserThenTransformer(IParser <R1> parser, ITransformer <R1, R2> transformer)
 {
     this.Parser      = parser;
     this.Transformer = transformer;
 }
コード例 #54
0
ファイル: FeatureTemplates.cs プロジェクト: pdonald/latvian
 public Prev(ITransformer transformer)
     : this(1, transformer)
 {
 }
コード例 #55
0
ファイル: Pipelyne.cs プロジェクト: niaher/pipelyne
 /// <summary>
 /// Register new <see cref="ITransformer"/>.
 /// </summary>
 /// <param name="transformer"><see cref="ITransformer"/> instance.</param>
 public void RegisterTransformer(ITransformer transformer)
 {
     this.transformers.Add(transformer.Name, transformer);
 }
コード例 #56
0
ファイル: ParserClasses.cs プロジェクト: sunny597/C-Compiler
 public OneOrMoreTransformer(ITransformer <R, R> transformer)
 {
     this.Transformer = transformer;
 }
コード例 #57
0
 public ModificationHistoryProjectPlugin(IFarmService farmService, IPhysicalApplicationPathProvider pathProvider)
 {
     this.farmService = farmService;
     transformer = new XslTransformer();
     this.pathProvider = pathProvider;
 }
コード例 #58
0
 private static Func <Schema, IRowToRowMapper> TransformerChecker(IExceptionContext ectx, ITransformer transformer)
 {
     ectx.CheckValue(transformer, nameof(transformer));
     ectx.CheckParam(transformer.IsRowToRowMapper, nameof(transformer), "Must be a row to row mapper");
     return(transformer.GetRowToRowMapper);
 }
コード例 #59
0
 public override bool Transform(ITransformer transformer)
 {
     return transformer.Transform(this);
 }
コード例 #60
0
 /// <summary>
 /// Method transforms TSource type collection to TResult type collection.
 /// </summary>
 /// <typeparam name="TSource">
 /// Type of collection.
 /// </typeparam>
 /// <typeparam name="TResult">
 /// Type of transformed collection.
 /// </typeparam>
 /// <param name="collection">
 /// Collection to transform.
 /// </param>
 /// <param name="transformer">
 /// Format to transform.
 /// </param>
 /// <returns>
 /// Returns an IEnumerator for the transformed collection.
 /// </returns>
 /// <exception cref="ArgumentNullException">
 /// Collection must not be null. Collection elements must not be null.
 /// </exception>
 public static IEnumerable <TResult> Transform <TSource, TResult>(this IEnumerable <TSource> collection, ITransformer <TSource, TResult> transformer)
 {
     return(collection.Transform(transformer.Transform));
 }