/// <inheritdoc/> public void Reset() { m_WrappedSensor.Reset(); // Zero out the buffer. for (var i = 0; i < m_NumStackedObservations; i++) { Array.Clear(m_StackedObservations[i], 0, m_StackedObservations[i].Length); } if (m_WrappedSensor.GetCompressionSpec().SensorCompressionType != SensorCompressionType.None) { for (var i = 0; i < m_NumStackedObservations; i++) { m_StackedCompressedObservations[i] = m_EmptyCompressedObservation; } } }
public static EventObservationSpec FromSensor(ISensor sensor) { var obsSpec = sensor.GetObservationSpec(); var shape = obsSpec.Shape; var dimProps = obsSpec.DimensionProperties; var dimInfos = new EventObservationDimensionInfo[shape.Length]; for (var i = 0; i < shape.Length; i++) { dimInfos[i].Size = shape[i]; dimInfos[i].Flags = (int)dimProps[i]; } var builtInSensorType = (sensor as IBuiltInSensor)?.GetBuiltInSensorType() ?? Sensors.BuiltInSensorType.Unknown; return(new EventObservationSpec { SensorName = sensor.GetName(), CompressionType = sensor.GetCompressionSpec().SensorCompressionType.ToString(), BuiltInSensorType = (int)builtInSensorType, ObservationType = (int)obsSpec.ObservationType, DimensionInfos = dimInfos, }); }
/// <summary> /// Initializes the sensor. /// </summary> /// <param name="wrapped">The wrapped sensor.</param> /// <param name="numStackedObservations">Number of stacked observations to keep.</param> public StackingSensor(ISensor wrapped, int numStackedObservations) { // TODO ensure numStackedObservations > 1 m_WrappedSensor = wrapped; m_NumStackedObservations = numStackedObservations; m_Name = $"StackingSensor_size{numStackedObservations}_{wrapped.GetName()}"; m_WrappedSpec = wrapped.GetObservationSpec(); m_UnstackedObservationSize = wrapped.ObservationSize(); // Set up the cached observation spec for the StackingSensor var newShape = m_WrappedSpec.Shape; // TODO support arbitrary stacking dimension newShape[newShape.Length - 1] *= numStackedObservations; m_ObservationSpec = new ObservationSpec( newShape, m_WrappedSpec.DimensionProperties, m_WrappedSpec.ObservationType ); // Initialize uncompressed buffer anyway in case python trainer does not // support the compression mapping and has to fall back to uncompressed obs. m_StackedObservations = new float[numStackedObservations][]; for (var i = 0; i < numStackedObservations; i++) { m_StackedObservations[i] = new float[m_UnstackedObservationSize]; } if (m_WrappedSensor.GetCompressionSpec().SensorCompressionType != SensorCompressionType.None) { m_StackedCompressedObservations = new byte[numStackedObservations][]; m_EmptyCompressedObservation = CreateEmptyPNG(); for (var i = 0; i < numStackedObservations; i++) { m_StackedCompressedObservations[i] = m_EmptyCompressedObservation; } m_CompressionMapping = ConstructStackedCompressedChannelMapping(wrapped); } if (m_WrappedSpec.Rank != 1) { var wrappedShape = m_WrappedSpec.Shape; m_tensorShape = new TensorShape(0, wrappedShape[0], wrappedShape[1], wrappedShape[2]); } }
/// <summary> /// Construct stacked CompressedChannelMapping. /// </summary> internal int[] ConstructStackedCompressedChannelMapping(ISensor wrappedSenesor) { // Get CompressedChannelMapping of the wrapped sensor. If the // wrapped sensor doesn't have one, use default mapping. // Default mapping: {0, 0, 0} for grayscale, identity mapping {1, 2, ..., n} otherwise. int[] wrappedMapping = null; int wrappedNumChannel = m_WrappedSpec.Shape[2]; wrappedMapping = wrappedSenesor.GetCompressionSpec().CompressedChannelMapping; if (wrappedMapping == null) { if (wrappedNumChannel == 1) { wrappedMapping = new[] { 0, 0, 0 }; } else { wrappedMapping = Enumerable.Range(0, wrappedNumChannel).ToArray(); } } // Construct stacked mapping using the mapping of wrapped sensor. // First pad the wrapped mapping to multiple of 3, then repeat // and add offset to each copy to form the stacked mapping. int paddedMapLength = (wrappedMapping.Length + 2) / 3 * 3; var compressionMapping = new int[paddedMapLength * m_NumStackedObservations]; for (var i = 0; i < m_NumStackedObservations; i++) { var offset = wrappedNumChannel * i; for (var j = 0; j < paddedMapLength; j++) { if (j < wrappedMapping.Length) { compressionMapping[j + paddedMapLength * i] = wrappedMapping[j] >= 0 ? wrappedMapping[j] + offset : -1; } else { compressionMapping[j + paddedMapLength * i] = -1; } } } return(compressionMapping); }
/// <summary> /// Generate an ObservationProto for the sensor using the provided ObservationWriter. /// This is equivalent to producing an Observation and calling Observation.ToProto(), /// but avoid some intermediate memory allocations. /// </summary> /// <param name="sensor"></param> /// <param name="observationWriter"></param> /// <returns></returns> public static ObservationProto GetObservationProto(this ISensor sensor, ObservationWriter observationWriter) { var obsSpec = sensor.GetObservationSpec(); var shape = obsSpec.Shape; ObservationProto observationProto = null; var compressionSpec = sensor.GetCompressionSpec(); var compressionType = compressionSpec.SensorCompressionType; // Check capabilities if we need to concatenate PNGs if (compressionType == SensorCompressionType.PNG && shape.Length == 3 && shape[2] > 3) { var trainerCanHandle = Academy.Instance.TrainerCapabilities == null || Academy.Instance.TrainerCapabilities.ConcatenatedPngObservations; if (!trainerCanHandle) { if (!s_HaveWarnedTrainerCapabilitiesMultiPng) { Debug.LogWarning( $"Attached trainer doesn't support multiple PNGs. Switching to uncompressed observations for sensor {sensor.GetName()}. " + "Please find the versions that work best together from our release page: " + "https://github.com/Unity-Technologies/ml-agents/releases" ); s_HaveWarnedTrainerCapabilitiesMultiPng = true; } compressionType = SensorCompressionType.None; } } // Check capabilities if we need mapping for compressed observations if (compressionType != SensorCompressionType.None && shape.Length == 3 && shape[2] > 3) { var trainerCanHandleMapping = Academy.Instance.TrainerCapabilities == null || Academy.Instance.TrainerCapabilities.CompressedChannelMapping; var isTrivialMapping = compressionSpec.IsTrivialMapping(); if (!trainerCanHandleMapping && !isTrivialMapping) { if (!s_HaveWarnedTrainerCapabilitiesMapping) { Debug.LogWarning( $"The sensor {sensor.GetName()} is using non-trivial mapping and " + "the attached trainer doesn't support compression mapping. " + "Switching to uncompressed observations. " + "Please find the versions that work best together from our release page: " + "https://github.com/Unity-Technologies/ml-agents/releases" ); s_HaveWarnedTrainerCapabilitiesMapping = true; } compressionType = SensorCompressionType.None; } } if (compressionType == SensorCompressionType.None) { var numFloats = sensor.ObservationSize(); var floatDataProto = new ObservationProto.Types.FloatData(); // Resize the float array // TODO upgrade protobuf versions so that we can set the Capacity directly - see https://github.com/protocolbuffers/protobuf/pull/6530 for (var i = 0; i < numFloats; i++) { floatDataProto.Data.Add(0.0f); } observationWriter.SetTarget(floatDataProto.Data, sensor.GetObservationSpec(), 0); sensor.Write(observationWriter); observationProto = new ObservationProto { FloatData = floatDataProto, CompressionType = (CompressionTypeProto)SensorCompressionType.None, }; } else { var compressedObs = sensor.GetCompressedObservation(); if (compressedObs == null) { throw new UnityAgentsException( $"GetCompressedObservation() returned null data for sensor named {sensor.GetName()}. " + "You must return a byte[]. If you don't want to use compressed observations, " + "return CompressionSpec.Default() from GetCompressionSpec()." ); } observationProto = new ObservationProto { CompressedData = ByteString.CopyFrom(compressedObs), CompressionType = (CompressionTypeProto)sensor.GetCompressionSpec().SensorCompressionType, }; if (compressionSpec.CompressedChannelMapping != null) { observationProto.CompressedChannelMapping.AddRange(compressionSpec.CompressedChannelMapping); } } // Add the dimension properties to the observationProto var dimensionProperties = obsSpec.DimensionProperties; for (int i = 0; i < dimensionProperties.Length; i++) { observationProto.DimensionProperties.Add((int)dimensionProperties[i]); } // Checking trainer compatibility with variable length observations if (dimensionProperties == new InplaceArray <DimensionProperty>(DimensionProperty.VariableSize, DimensionProperty.None)) { var trainerCanHandleVarLenObs = Academy.Instance.TrainerCapabilities == null || Academy.Instance.TrainerCapabilities.VariableLengthObservation; if (!trainerCanHandleVarLenObs) { throw new UnityAgentsException("Variable Length Observations are not supported by the trainer"); } } for (var i = 0; i < shape.Length; i++) { observationProto.Shape.Add(shape[i]); } var sensorName = sensor.GetName(); if (!string.IsNullOrEmpty(sensorName)) { observationProto.Name = sensorName; } observationProto.ObservationType = (ObservationTypeProto)obsSpec.ObservationType; return(observationProto); }