コード例 #1
0
 /// <inheritdoc/>
 public void Reset()
 {
     m_WrappedSensor.Reset();
     // Zero out the buffer.
     for (var i = 0; i < m_NumStackedObservations; i++)
     {
         Array.Clear(m_StackedObservations[i], 0, m_StackedObservations[i].Length);
     }
     if (m_WrappedSensor.GetCompressionSpec().SensorCompressionType != SensorCompressionType.None)
     {
         for (var i = 0; i < m_NumStackedObservations; i++)
         {
             m_StackedCompressedObservations[i] = m_EmptyCompressedObservation;
         }
     }
 }
コード例 #2
0
        public static EventObservationSpec FromSensor(ISensor sensor)
        {
            var obsSpec  = sensor.GetObservationSpec();
            var shape    = obsSpec.Shape;
            var dimProps = obsSpec.DimensionProperties;
            var dimInfos = new EventObservationDimensionInfo[shape.Length];

            for (var i = 0; i < shape.Length; i++)
            {
                dimInfos[i].Size  = shape[i];
                dimInfos[i].Flags = (int)dimProps[i];
            }

            var builtInSensorType =
                (sensor as IBuiltInSensor)?.GetBuiltInSensorType() ?? Sensors.BuiltInSensorType.Unknown;

            return(new EventObservationSpec
            {
                SensorName = sensor.GetName(),
                CompressionType = sensor.GetCompressionSpec().SensorCompressionType.ToString(),
                BuiltInSensorType = (int)builtInSensorType,
                ObservationType = (int)obsSpec.ObservationType,
                DimensionInfos = dimInfos,
            });
        }
コード例 #3
0
        /// <summary>
        /// Initializes the sensor.
        /// </summary>
        /// <param name="wrapped">The wrapped sensor.</param>
        /// <param name="numStackedObservations">Number of stacked observations to keep.</param>
        public StackingSensor(ISensor wrapped, int numStackedObservations)
        {
            // TODO ensure numStackedObservations > 1
            m_WrappedSensor          = wrapped;
            m_NumStackedObservations = numStackedObservations;

            m_Name = $"StackingSensor_size{numStackedObservations}_{wrapped.GetName()}";

            m_WrappedSpec = wrapped.GetObservationSpec();

            m_UnstackedObservationSize = wrapped.ObservationSize();

            // Set up the cached observation spec for the StackingSensor
            var newShape = m_WrappedSpec.Shape;

            // TODO support arbitrary stacking dimension
            newShape[newShape.Length - 1] *= numStackedObservations;
            m_ObservationSpec              = new ObservationSpec(
                newShape, m_WrappedSpec.DimensionProperties, m_WrappedSpec.ObservationType
                );

            // Initialize uncompressed buffer anyway in case python trainer does not
            // support the compression mapping and has to fall back to uncompressed obs.
            m_StackedObservations = new float[numStackedObservations][];
            for (var i = 0; i < numStackedObservations; i++)
            {
                m_StackedObservations[i] = new float[m_UnstackedObservationSize];
            }

            if (m_WrappedSensor.GetCompressionSpec().SensorCompressionType != SensorCompressionType.None)
            {
                m_StackedCompressedObservations = new byte[numStackedObservations][];
                m_EmptyCompressedObservation    = CreateEmptyPNG();
                for (var i = 0; i < numStackedObservations; i++)
                {
                    m_StackedCompressedObservations[i] = m_EmptyCompressedObservation;
                }
                m_CompressionMapping = ConstructStackedCompressedChannelMapping(wrapped);
            }

            if (m_WrappedSpec.Rank != 1)
            {
                var wrappedShape = m_WrappedSpec.Shape;
                m_tensorShape = new TensorShape(0, wrappedShape[0], wrappedShape[1], wrappedShape[2]);
            }
        }
コード例 #4
0
        /// <summary>
        /// Construct stacked CompressedChannelMapping.
        /// </summary>
        internal int[] ConstructStackedCompressedChannelMapping(ISensor wrappedSenesor)
        {
            // Get CompressedChannelMapping of the wrapped sensor. If the
            // wrapped sensor doesn't have one, use default mapping.
            // Default mapping: {0, 0, 0} for grayscale, identity mapping {1, 2, ..., n} otherwise.
            int[] wrappedMapping    = null;
            int   wrappedNumChannel = m_WrappedSpec.Shape[2];

            wrappedMapping = wrappedSenesor.GetCompressionSpec().CompressedChannelMapping;
            if (wrappedMapping == null)
            {
                if (wrappedNumChannel == 1)
                {
                    wrappedMapping = new[] { 0, 0, 0 };
                }
                else
                {
                    wrappedMapping = Enumerable.Range(0, wrappedNumChannel).ToArray();
                }
            }

            // Construct stacked mapping using the mapping of wrapped sensor.
            // First pad the wrapped mapping to multiple of 3, then repeat
            // and add offset to each copy to form the stacked mapping.
            int paddedMapLength    = (wrappedMapping.Length + 2) / 3 * 3;
            var compressionMapping = new int[paddedMapLength * m_NumStackedObservations];

            for (var i = 0; i < m_NumStackedObservations; i++)
            {
                var offset = wrappedNumChannel * i;
                for (var j = 0; j < paddedMapLength; j++)
                {
                    if (j < wrappedMapping.Length)
                    {
                        compressionMapping[j + paddedMapLength * i] = wrappedMapping[j] >= 0 ? wrappedMapping[j] + offset : -1;
                    }
                    else
                    {
                        compressionMapping[j + paddedMapLength * i] = -1;
                    }
                }
            }
            return(compressionMapping);
        }
コード例 #5
0
ファイル: GrpcExtensions.cs プロジェクト: vanreusVU/ml-agents
        /// <summary>
        /// Generate an ObservationProto for the sensor using the provided ObservationWriter.
        /// This is equivalent to producing an Observation and calling Observation.ToProto(),
        /// but avoid some intermediate memory allocations.
        /// </summary>
        /// <param name="sensor"></param>
        /// <param name="observationWriter"></param>
        /// <returns></returns>
        public static ObservationProto GetObservationProto(this ISensor sensor, ObservationWriter observationWriter)
        {
            var obsSpec = sensor.GetObservationSpec();
            var shape   = obsSpec.Shape;
            ObservationProto observationProto = null;
            var compressionSpec = sensor.GetCompressionSpec();
            var compressionType = compressionSpec.SensorCompressionType;

            // Check capabilities if we need to concatenate PNGs
            if (compressionType == SensorCompressionType.PNG && shape.Length == 3 && shape[2] > 3)
            {
                var trainerCanHandle = Academy.Instance.TrainerCapabilities == null || Academy.Instance.TrainerCapabilities.ConcatenatedPngObservations;
                if (!trainerCanHandle)
                {
                    if (!s_HaveWarnedTrainerCapabilitiesMultiPng)
                    {
                        Debug.LogWarning(
                            $"Attached trainer doesn't support multiple PNGs. Switching to uncompressed observations for sensor {sensor.GetName()}. " +
                            "Please find the versions that work best together from our release page: " +
                            "https://github.com/Unity-Technologies/ml-agents/releases"
                            );
                        s_HaveWarnedTrainerCapabilitiesMultiPng = true;
                    }
                    compressionType = SensorCompressionType.None;
                }
            }
            // Check capabilities if we need mapping for compressed observations
            if (compressionType != SensorCompressionType.None && shape.Length == 3 && shape[2] > 3)
            {
                var trainerCanHandleMapping = Academy.Instance.TrainerCapabilities == null || Academy.Instance.TrainerCapabilities.CompressedChannelMapping;
                var isTrivialMapping        = compressionSpec.IsTrivialMapping();
                if (!trainerCanHandleMapping && !isTrivialMapping)
                {
                    if (!s_HaveWarnedTrainerCapabilitiesMapping)
                    {
                        Debug.LogWarning(
                            $"The sensor {sensor.GetName()} is using non-trivial mapping and " +
                            "the attached trainer doesn't support compression mapping. " +
                            "Switching to uncompressed observations. " +
                            "Please find the versions that work best together from our release page: " +
                            "https://github.com/Unity-Technologies/ml-agents/releases"
                            );
                        s_HaveWarnedTrainerCapabilitiesMapping = true;
                    }
                    compressionType = SensorCompressionType.None;
                }
            }

            if (compressionType == SensorCompressionType.None)
            {
                var numFloats      = sensor.ObservationSize();
                var floatDataProto = new ObservationProto.Types.FloatData();
                // Resize the float array
                // TODO upgrade protobuf versions so that we can set the Capacity directly - see https://github.com/protocolbuffers/protobuf/pull/6530
                for (var i = 0; i < numFloats; i++)
                {
                    floatDataProto.Data.Add(0.0f);
                }

                observationWriter.SetTarget(floatDataProto.Data, sensor.GetObservationSpec(), 0);
                sensor.Write(observationWriter);

                observationProto = new ObservationProto
                {
                    FloatData       = floatDataProto,
                    CompressionType = (CompressionTypeProto)SensorCompressionType.None,
                };
            }
            else
            {
                var compressedObs = sensor.GetCompressedObservation();
                if (compressedObs == null)
                {
                    throw new UnityAgentsException(
                              $"GetCompressedObservation() returned null data for sensor named {sensor.GetName()}. " +
                              "You must return a byte[]. If you don't want to use compressed observations, " +
                              "return CompressionSpec.Default() from GetCompressionSpec()."
                              );
                }
                observationProto = new ObservationProto
                {
                    CompressedData  = ByteString.CopyFrom(compressedObs),
                    CompressionType = (CompressionTypeProto)sensor.GetCompressionSpec().SensorCompressionType,
                };
                if (compressionSpec.CompressedChannelMapping != null)
                {
                    observationProto.CompressedChannelMapping.AddRange(compressionSpec.CompressedChannelMapping);
                }
            }

            // Add the dimension properties to the observationProto
            var dimensionProperties = obsSpec.DimensionProperties;

            for (int i = 0; i < dimensionProperties.Length; i++)
            {
                observationProto.DimensionProperties.Add((int)dimensionProperties[i]);
            }

            // Checking trainer compatibility with variable length observations
            if (dimensionProperties == new InplaceArray <DimensionProperty>(DimensionProperty.VariableSize, DimensionProperty.None))
            {
                var trainerCanHandleVarLenObs = Academy.Instance.TrainerCapabilities == null || Academy.Instance.TrainerCapabilities.VariableLengthObservation;
                if (!trainerCanHandleVarLenObs)
                {
                    throw new UnityAgentsException("Variable Length Observations are not supported by the trainer");
                }
            }

            for (var i = 0; i < shape.Length; i++)
            {
                observationProto.Shape.Add(shape[i]);
            }

            var sensorName = sensor.GetName();

            if (!string.IsNullOrEmpty(sensorName))
            {
                observationProto.Name = sensorName;
            }

            observationProto.ObservationType = (ObservationTypeProto)obsSpec.ObservationType;
            return(observationProto);
        }