/** * ラスタから射影変換したピクセルを得ます。 * @param i_lt_x * @param i_lt_y * @param i_step_x * @param i_step_y * @param i_width * @param i_height * @param i_out_st * 格納バッファo_pixelの先頭のインデクス。 * @param o_pixel * グレースケールのピクセルを格納するバッファ * @ */ private bool rectPixels(INyARGrayscaleRaster i_raster, int i_lt_x, int i_lt_y, int i_step_x, int i_step_y, int i_width, int i_height, int i_out_st, int[] o_pixel) { double[] cpara = this._cparam; int[] ref_x = this._ref_x; int[] ref_y = this._ref_y; int raster_width = i_raster.getWidth();; int raster_height = i_raster.getHeight(); int out_index = i_out_st; double cpara_6 = cpara[6]; double cpara_0 = cpara[0]; double cpara_3 = cpara[3]; for (int i = 0; i < i_height; i++) { //1列分のピクセルのインデックス値を計算する。 int cy0 = 1 + i * i_step_y + i_lt_y; double cpy0_12 = cpara[1] * cy0 + cpara[2]; double cpy0_45 = cpara[4] * cy0 + cpara[5]; double cpy0_7 = cpara[7] * cy0 + 1.0; int pt = 0; for (int i2 = 0; i2 < i_width; i2++) { int cx0 = 1 + i2 * i_step_x + i_lt_x; double d = cpara_6 * cx0 + cpy0_7; int x = (int)((cpara_0 * cx0 + cpy0_12) / d); int y = (int)((cpara_3 * cx0 + cpy0_45) / d); if (x < 0 || y < 0 || x >= raster_width || y >= raster_height) { return(false); } ref_x[pt] = x; ref_y[pt] = y; pt++; } //GS値を配列に取得 i_raster.getPixelSet(ref_x, ref_y, i_width, o_pixel, out_index); out_index += i_width; } return(true); }
/** * この関数は、マーカパターンからデータを読み取ります。 * @param i_reader * ラスタリーダ * @param i_raster_size * ラスタのサイズ * @param o_bitbuffer * データビットの出力先 * @return * 成功するとtrue * @throws NyARException */ public bool readDataBits(INyARGrayscaleRaster i_raster, MarkerPattDecoder o_bitbuffer) { int raster_width = i_raster.getWidth(); int raster_height = i_raster.getHeight(); double[] index_x = this.__readDataBits_index_bit_x; double[] index_y = this.__readDataBits_index_bit_y; //読み出し位置を取得 detectDataBitsIndex(index_x, index_y); int resolution = 3; double[] cpara = this._cparam; int[] ref_x = this._ref_x; int[] ref_y = this._ref_y; int[] pixcel_temp = this._pixcel_temp; double cpara_0 = cpara[0]; double cpara_1 = cpara[1]; double cpara_3 = cpara[3]; double cpara_6 = cpara[6]; int p = 0; for (int i = 0; i < resolution; i++) { //1列分のピクセルのインデックス値を計算する。 double cy0 = 1 + index_y[i * 2 + 0]; double cy1 = 1 + index_y[i * 2 + 1]; double cpy0_12 = cpara_1 * cy0 + cpara[2]; double cpy0_45 = cpara[4] * cy0 + cpara[5]; double cpy0_7 = cpara[7] * cy0 + 1.0; double cpy1_12 = cpara_1 * cy1 + cpara[2]; double cpy1_45 = cpara[4] * cy1 + cpara[5]; double cpy1_7 = cpara[7] * cy1 + 1.0; int pt = 0; for (int i2 = 0; i2 < resolution; i2++) { int xx, yy; double d; double cx0 = 1 + index_x[i2 * 2 + 0]; double cx1 = 1 + index_x[i2 * 2 + 1]; double cp6_0 = cpara_6 * cx0; double cpx0_0 = cpara_0 * cx0; double cpx3_0 = cpara_3 * cx0; double cp6_1 = cpara_6 * cx1; double cpx0_1 = cpara_0 * cx1; double cpx3_1 = cpara_3 * cx1; d = cp6_0 + cpy0_7; ref_x[pt] = xx = (int)((cpx0_0 + cpy0_12) / d); ref_y[pt] = yy = (int)((cpx3_0 + cpy0_45) / d); if (xx < 0 || xx >= raster_width || yy < 0 || yy >= raster_height) { ref_x[pt] = xx < 0 ? 0 : (xx >= raster_width ? raster_width - 1 : xx); ref_y[pt] = yy < 0 ? 0 : (yy >= raster_height ? raster_height - 1 : yy); } pt++; d = cp6_0 + cpy1_7; ref_x[pt] = xx = (int)((cpx0_0 + cpy1_12) / d); ref_y[pt] = yy = (int)((cpx3_0 + cpy1_45) / d); if (xx < 0 || xx >= raster_width || yy < 0 || yy >= raster_height) { ref_x[pt] = xx < 0 ? 0 : (xx >= raster_width ? raster_width - 1 : xx); ref_y[pt] = yy < 0 ? 0 : (yy >= raster_height ? raster_height - 1 : yy); } pt++; d = cp6_1 + cpy0_7; ref_x[pt] = xx = (int)((cpx0_1 + cpy0_12) / d); ref_y[pt] = yy = (int)((cpx3_1 + cpy0_45) / d); if (xx < 0 || xx >= raster_width || yy < 0 || yy >= raster_height) { ref_x[pt] = xx < 0 ? 0 : (xx >= raster_width ? raster_width - 1 : xx); ref_y[pt] = yy < 0 ? 0 : (yy >= raster_height ? raster_height - 1 : yy); } pt++; d = cp6_1 + cpy1_7; ref_x[pt] = xx = (int)((cpx0_1 + cpy1_12) / d); ref_y[pt] = yy = (int)((cpx3_1 + cpy1_45) / d); if (xx < 0 || xx >= raster_width || yy < 0 || yy >= raster_height) { ref_x[pt] = xx < 0 ? 0 : (xx >= raster_width ? raster_width - 1 : xx); ref_y[pt] = yy < 0 ? 0 : (yy >= raster_height ? raster_height - 1 : yy); } pt++; } //1行分のピクセルを取得(場合によっては専用アクセサを書いた方がいい) i_raster.getPixelSet(ref_x, ref_y, resolution * 4, pixcel_temp, 0); //グレースケールにしながら、line→mapへの転写 for (int i2 = 0; i2 < resolution; i2++) { int index = i2 * 4; o_bitbuffer.setBit(p, (pixcel_temp[index + 0] + pixcel_temp[index + 1] + pixcel_temp[index + 2] + pixcel_temp[index + 3]) / 4); p++; } } return(true); }
/** * この関数は、マーカパターンからデータを読み取ります。 * @param i_reader * ラスタリーダ * @param i_raster_size * ラスタのサイズ * @param i_th * 敷居値情報 * @param o_bitbuffer * データビットの出力先 * @return * 成功するとtrue * @ */ public bool readDataBits(INyARGrayscaleRaster i_raster, PerspectivePixelReader.TThreshold i_th, MarkerPattEncoder o_bitbuffer) { int raster_width = i_raster.getWidth(); int raster_height = i_raster.getHeight(); double[] index_x = this.__readDataBits_index_bit_x; double[] index_y = this.__readDataBits_index_bit_y; //読み出し位置を取得 int size = detectDataBitsIndex(i_raster, i_th, index_x, index_y); int resolution = size + size - 1; if (size < 0) { return(false); } if (!o_bitbuffer.initEncoder(size - 1)) { return(false); } double[] cpara = this._cparam; int[] ref_x = this._ref_x; int[] ref_y = this._ref_y; int[] pixcel_temp = this._pixcel_temp; double cpara_0 = cpara[0]; double cpara_1 = cpara[1]; double cpara_3 = cpara[3]; double cpara_6 = cpara[6]; int th = i_th.th; int p = 0; for (int i = 0; i < resolution; i++) { //1列分のピクセルのインデックス値を計算する。 double cy0 = 1 + index_y[i * 2 + 0]; double cy1 = 1 + index_y[i * 2 + 1]; double cpy0_12 = cpara_1 * cy0 + cpara[2]; double cpy0_45 = cpara[4] * cy0 + cpara[5]; double cpy0_7 = cpara[7] * cy0 + 1.0; double cpy1_12 = cpara_1 * cy1 + cpara[2]; double cpy1_45 = cpara[4] * cy1 + cpara[5]; double cpy1_7 = cpara[7] * cy1 + 1.0; int pt = 0; for (int i2 = 0; i2 < resolution; i2++) { int xx, yy; double d; double cx0 = 1 + index_x[i2 * 2 + 0]; double cx1 = 1 + index_x[i2 * 2 + 1]; double cp6_0 = cpara_6 * cx0; double cpx0_0 = cpara_0 * cx0; double cpx3_0 = cpara_3 * cx0; double cp6_1 = cpara_6 * cx1; double cpx0_1 = cpara_0 * cx1; double cpx3_1 = cpara_3 * cx1; d = cp6_0 + cpy0_7; ref_x[pt] = xx = (int)((cpx0_0 + cpy0_12) / d); ref_y[pt] = yy = (int)((cpx3_0 + cpy0_45) / d); if (xx < 0 || xx >= raster_width || yy < 0 || yy >= raster_height) { ref_x[pt] = xx < 0 ? 0 : (xx >= raster_width ? raster_width - 1 : xx); ref_y[pt] = yy < 0 ? 0 : (yy >= raster_height ? raster_height - 1 : yy); } pt++; d = cp6_0 + cpy1_7; ref_x[pt] = xx = (int)((cpx0_0 + cpy1_12) / d); ref_y[pt] = yy = (int)((cpx3_0 + cpy1_45) / d); if (xx < 0 || xx >= raster_width || yy < 0 || yy >= raster_height) { ref_x[pt] = xx < 0 ? 0 : (xx >= raster_width ? raster_width - 1 : xx); ref_y[pt] = yy < 0 ? 0 : (yy >= raster_height ? raster_height - 1 : yy); } pt++; d = cp6_1 + cpy0_7; ref_x[pt] = xx = (int)((cpx0_1 + cpy0_12) / d); ref_y[pt] = yy = (int)((cpx3_1 + cpy0_45) / d); if (xx < 0 || xx >= raster_width || yy < 0 || yy >= raster_height) { ref_x[pt] = xx < 0 ? 0 : (xx >= raster_width ? raster_width - 1 : xx); ref_y[pt] = yy < 0 ? 0 : (yy >= raster_height ? raster_height - 1 : yy); } pt++; d = cp6_1 + cpy1_7; ref_x[pt] = xx = (int)((cpx0_1 + cpy1_12) / d); ref_y[pt] = yy = (int)((cpx3_1 + cpy1_45) / d); if (xx < 0 || xx >= raster_width || yy < 0 || yy >= raster_height) { ref_x[pt] = xx < 0 ? 0 : (xx >= raster_width ? raster_width - 1 : xx); ref_y[pt] = yy < 0 ? 0 : (yy >= raster_height ? raster_height - 1 : yy); } pt++; } //1行分のピクセルを取得(場合によっては専用アクセサを書いた方がいい) i_raster.getPixelSet(ref_x, ref_y, resolution * 4, pixcel_temp, 0); //グレースケールにしながら、line→mapへの転写 for (int i2 = 0; i2 < resolution; i2++) { int index = i2 * 4; int pixel = (pixcel_temp[index + 0] + pixcel_temp[index + 1] + pixcel_temp[index + 2] + pixcel_temp[index + 3]) / 4; // +pixcel_temp[index+4]+pixcel_temp[index+5]+ // pixcel_temp[index+6]+pixcel_temp[index+7]+pixcel_temp[index+8]+ // pixcel_temp[index+9]+pixcel_temp[index+10]+pixcel_temp[index+11])/(4*3); //暗点を1、明点を0で表現します。 o_bitbuffer.setBitByBitIndex(p, pixel > th ? 0 : 1); p++; } } return(true); }
/** * この関数は、マーカ画像のi_x1列目とi_x2列目を平均して、タイミングパターンの周波数を得ます。 * L=暗点、H=明点、LHL=1周期として、たとえばLHLHLの場合は2を返します。LHLHやHLHL等の始端と終端のレベルが異なるパターンを * 検出した場合、関数は失敗します。 * @param i_x1 * ライン1のインデクス * @param i_th_h * 明点の敷居値 * @param i_th_l * 暗点の敷居値 * @param o_edge_index * 検出したエッジ位置(H->L,L->H)のインデクスを受け取る配列。 * [FRQ_POINTS]以上の配列を指定すること。 * @return * 周波数の値。失敗すると-1 * @ */ public int getColFrequency(INyARGrayscaleRaster i_raster, int i_x1, int i_th_h, int i_th_l, int[] o_edge_index) { double[] cpara = this._cparam; int[] ref_x = this._ref_x; int[] ref_y = this._ref_y; int[] pixcel_temp = this._pixcel_temp; //0,2,4,6,8,10,12,14,16,18,20=(11*20)/2=110 //初期化 int[] freq_count_table = this._freq_count_table; for (int i = 0; i < 10; i++) { freq_count_table[i] = 0; } int[] freq_table = this._freq_table; for (int i = 0; i < 110; i++) { freq_table[i] = 0; } int raster_width = i_raster.getWidth(); int raster_height = i_raster.getHeight(); double cpara7 = cpara[7]; double cpara4 = cpara[4]; double cpara1 = cpara[1]; //基準点から4ピクセルを参照パターンとして抽出 for (int i = 0; i < FREQ_SAMPLE_NUM; i++) { int cx0 = 1 + i + i_x1; double cp6_0 = cpara[6] * cx0; double cpx0_0 = cpara[0] * cx0 + cpara[2]; double cpx3_0 = cpara[3] * cx0 + cpara[5]; int pt = 0; for (int i2 = 0; i2 < FRQ_POINTS; i2++) { int cy = 1 + i2 * FRQ_STEP + FRQ_EDGE; double d = cp6_0 + cpara7 * cy + 1.0; int x = (int)((cpx0_0 + cpara1 * cy) / d); int y = (int)((cpx3_0 + cpara4 * cy) / d); if (x < 0 || y < 0 || x >= raster_width || y >= raster_height) { return(-1); } ref_x[pt] = x; ref_y[pt] = y; pt++; } //ピクセルを取得(入力画像を多様化するならここを調整すること) i_raster.getPixelSet(ref_x, ref_y, FRQ_POINTS, pixcel_temp, 0); int freq_t = getFreqInfo(pixcel_temp, i_th_h, i_th_l, o_edge_index); //周期は3-10であること if (freq_t < MIN_FREQ || freq_t > MAX_FREQ) { continue; } //周期は等間隔であること if (!checkFreqWidth(o_edge_index, freq_t)) { continue; } //検出カウンタを追加 freq_count_table[freq_t]++; int table_st = (freq_t - 1) * freq_t; for (int i2 = 0; i2 < freq_t * 2; i2++) { freq_table[table_st + i2] += o_edge_index[i2]; } } return(getMaxFreq(freq_count_table, freq_table, o_edge_index)); }
/** * この関数は、マーカ画像のi_y1行目とi_y2行目を平均して、タイミングパターンの周波数を得ます。 * L=暗点、H=明点、LHL=1周期として、たとえばLHLHLの場合は2を返します。LHLHやHLHL等の始端と終端のレベルが異なるパターンを * 検出した場合、関数は失敗します。 * @param i_y1 * ライン1のインデクス * @param i_th_h * 明点の敷居値 * @param i_th_l * 暗点の敷居値 * @param o_edge_index * 検出したエッジ位置(H->L,L->H)のインデクスを受け取る配列。 * [FRQ_POINTS]以上の配列を指定すること。 * @return * 周波数の値。失敗すると-1 * @ */ public int getRowFrequency(INyARGrayscaleRaster i_raster, int i_y1, int i_th_h, int i_th_l, int[] o_edge_index) { //3,4,5,6,7,8,9,10 int[] freq_count_table = this._freq_count_table; //0,2,4,6,8,10,12,14,16,18,20の要素を持つ配列 int[] freq_table = this._freq_table; //初期化 double[] cpara = this._cparam; int[] ref_x = this._ref_x; int[] ref_y = this._ref_y; int[] pixcel_temp = this._pixcel_temp; for (int i = 0; i < 10; i++) { freq_count_table[i] = 0; } for (int i = 0; i < 110; i++) { freq_table[i] = 0; } NyARIntSize raster_size = i_raster.getSize(); int raster_width = raster_size.w; int raster_height = raster_size.h; double cpara_0 = cpara[0]; double cpara_3 = cpara[3]; double cpara_6 = cpara[6]; //10-20ピクセル目からタイミングパターンを検出 for (int i = 0; i < FREQ_SAMPLE_NUM; i++) { //2行分のピクセルインデックスを計算 double cy0 = 1 + i_y1 + i; double cpy0_12 = cpara[1] * cy0 + cpara[2]; double cpy0_45 = cpara[4] * cy0 + cpara[5]; double cpy0_7 = cpara[7] * cy0 + 1.0; int pt = 0; for (int i2 = 0; i2 < FRQ_POINTS; i2++) { double cx0 = 1 + i2 * FRQ_STEP + FRQ_EDGE; double d = (cpara_6 * cx0) + cpy0_7; int x = (int)((cpara_0 * cx0 + cpy0_12) / d); int y = (int)((cpara_3 * cx0 + cpy0_45) / d); if (x < 0 || y < 0 || x >= raster_width || y >= raster_height) { return(-1); } ref_x[pt] = x; ref_y[pt] = y; pt++; } //ピクセルを取得(入力画像を多様化するならここから先を調整すること) i_raster.getPixelSet(ref_x, ref_y, FRQ_POINTS, pixcel_temp, 0); //o_edge_indexを一時的に破壊して調査する int freq_t = getFreqInfo(pixcel_temp, i_th_h, i_th_l, o_edge_index); //周期は3-10であること if (freq_t < MIN_FREQ || freq_t > MAX_FREQ) { continue; } //周期は等間隔であること if (!checkFreqWidth(o_edge_index, freq_t)) { continue; } //検出カウンタを追加 freq_count_table[freq_t]++; int table_st = (freq_t - 1) * freq_t; for (int i2 = 0; i2 < freq_t * 2; i2++) { freq_table[table_st + i2] += o_edge_index[i2]; } } return(getMaxFreq(freq_count_table, freq_table, o_edge_index)); }