コード例 #1
0
 public void Run()
 {
     if (_neuralNet == null)
     {
         return;
     }
     _neuralNet.Run(AddNoise(Trainigs[TestSample], TestNoise), _expectations[TestSample], out double[] outputs);
     Columns.SetColumns(outputs);
 }
コード例 #2
0
        public void Train()
        {
            _neuralNet = new NeuralNet(new int[] { Trainigs[0].Length, X, Y, 4 }, L, 0, 1, new Sigmoid(), new MeanSquare());

            var noises = new double[2][][];

            for (var j = 0; j < noises.Length; j++)
            {
                noises[j] = new double[Trainigs.Length][];
                for (var k = 0; k < Trainigs.Length; k++)
                {
                    noises[j][k] = AddNoise(Trainigs[k], LearnNoise);
                }
            }

            var learnErrors = new double[E];
            var testErrors  = new double[E];

            for (var i = 0; i < E; i++)
            {
                testErrors[i] = 0;
                for (var j = 0; j < noises.Length; j++)
                {
                    for (var k = 0; k < Trainigs.Length; k++)
                    {
                        testErrors[i] += _neuralNet.Run(noises[j][k], _expectations[k], out double[] outputs);
                    }
                }
                testErrors[i] /= noises.Length * Trainigs.Length;

                learnErrors[i] = 0;
                for (var j = 0; j < Trainigs.Length; j++)
                {
                    learnErrors[i] += _neuralNet.Train(Trainigs[j], _expectations[j]);
                }
                learnErrors[i] /= Trainigs.Length;
            }

            Lines.SetLines(learnErrors, testErrors);
        }