コード例 #1
0
        private IVector MakeStep(IVector direction, INet net, double currentError)
        {
            const int maximumNumberOfTry = 50;
            var numberOfTry = 0;
            double error;
            var step = direction.Mul(_alpha); ;

            var oldWeights = _weights;
            //can change alpha by minimizing it in f(xk + alpha*direction)
            do
            {
                if (numberOfTry > maximumNumberOfTry || _alpha < 0.000000000001)
                    break;

                _weights = oldWeights.Sum(step); //x(k+1) = xk + sk
                net.SetWeights(_weights); //content of _weights now shared between net and _weights vector
                error = GetBatchError(net);

                _alpha /= 2.1;
                step = direction.Mul(_alpha);
                numberOfTry++;
            } while (error > currentError);

            if (numberOfTry > maximumNumberOfTry || _alpha < 0.000000000001)
            {
                Console.WriteLine("Simple step was performed. Too little alpha: {0:0.#############}.", _alpha);
                //step = direction.Mul(_alpha);
                _weights = oldWeights.Sum(direction.Mul(0.1));
                net.SetWeights(_weights);
                //AddLittleCorrectionToWeights(net.Layers);
                //_gradient = null;
                _alpha = 1.0;
                return null;
            }

            _alpha = 1.0;
            return step;
        }
コード例 #2
0
        private IVector MakeStepGoldstein(IVector direction, INet net, double currentError, IVector gradient)
        {
            const int maximumNumberOfTry = 50;
            var numberOfTry = 0;
            double error;
            var step = direction.Mul(_alpha); ;
            var c = 0.1;
            var p = _random.NextDouble()*0.3 + 0.3;

            var oldWeights = _weights;
            //can change alpha by minimizing it in f(xk + alpha*direction)
            var threshold = 0.0;
            do
            {
                if (numberOfTry > maximumNumberOfTry || _alpha < 0.00001)
                    break;

                _weights = oldWeights.Sum(step); //x(k+1) = xk + sk
                net.SetWeights(_weights); //content of _weights now shared between net and _weights vector
                error = GetBatchError(net);

                threshold = gradient.Mul(step).Mul(_alpha).Mul(c).GetMod().X;

                _alpha *= p;
                step = direction.Mul(_alpha);
                numberOfTry++;
            } while (error > currentError + threshold);

            if (numberOfTry > maximumNumberOfTry || _alpha < 0.00001)
            {
                _weights = oldWeights;
                net.SetWeights(_weights);
                //will make gradient descent on next step
                _gradient = null;
                _b = Matrix.CreateI(net.WeightsCount, net.WeightsCount, () => new RealNumber(1), () => new RealNumber(0)); //b0
                _alpha = 1.0;
                Console.WriteLine("Reset matrix");
                return null;
            }

            _alpha = 1.0;
            return step;
        }
コード例 #3
0
ファイル: BackPropagation.cs プロジェクト: Diover/nets
 private void ChangeAndSetWeights(IVector delta, INet net)
 {
     _weights = _weights.Sum(delta);
     net.SetWeights(_weights);
 }