コード例 #1
0
ファイル: BackpropAlgorithm.cs プロジェクト: itadapter/ML
        private double feedForward(double[][,] input, Class cls)
        {
            Net.Calculate(input, m_Values);

            var lidx   = Net.LayerCount - 1;
            var result = m_Values[lidx];
            var errors = m_Errors[lidx];
            var len    = result.GetLength(0);
            var output = new double[len];

            for (int j = 0; j < len; j++)
            {
                output[j] = result[j][0, 0];
            }

            var expect = m_ExpectedOutputs[cls];
            var llayer = Net[lidx];

            for (int p = 0; p < llayer.OutputDepth; p++)
            {
                var ej    = m_LossFunction.Derivative(p, output, expect);
                var value = result[p][0, 0];
                var deriv = (llayer.ActivationFunction != null) ? llayer.ActivationFunction.DerivativeFromValue(value) : 1;
                errors[p][0, 0] = ej * deriv / m_BatchSize;
            }

            return(m_LossFunction.Value(output, expect) / m_BatchSize);
        }
コード例 #2
0
        private double feedForward(NeuralNetwork net, double[] input, double[] expected)
        {
            var output = net.Calculate(input);
            var llayer = net[net.LayerCount - 1];
            var errors = m_Errors[net.LayerCount - 1];

            for (int j = 0; j < m_OutputDim; j++)
            {
                var neuron = llayer[j];
                var ej     = m_LossFunction.Derivative(j, output, expected);
                errors[j] = ej * neuron.Derivative;
            }

            return(m_LossFunction.Value(output, expected));
        }