コード例 #1
0
        public async Task <IActionResult> GetForDriver(int id)
        {
            if (!User.Identity.IsAuthenticated)
            {
                return(Challenge());
            }

            Driver driver = await _driverRepository.GetAsync(id);

            AuthorizationResult authResult = await _authorizationService.AuthorizeAsync(User, driver, "DriverInfoPolicy");

            if (!authResult.Succeeded)
            {
                return(Forbid());
            }

            IEnumerable <Leg> legs = await _legRepository.ListForDriverAsync(id);

            foreach (Leg leg in legs)
            {
                leg.Driver = null; // to prevent self-referencing loops during serialization
            }

            return(Ok(legs));
        }
コード例 #2
0
        public async Task ComputeDriverStatistics(int id)
        {
            if (driverStats == null)
            {
                driverStats = new Dictionary <int, DriverStatisticResults>();
            }

            Driver driver = await _driverRepository.GetAsync(id);

            if (driver == null)
            {
                return;
            }

            IEnumerable <Leg> legs = await _legRepository.ListForDriverAsync(id);

            DriverStatisticResults results = new DriverStatisticResults();

            results.DriverID    = id;
            results.Pickups     = legs.Select(leg => leg.NumOfPassengersPickedUp).Sum();
            results.MilesDriven = legs.Select(leg => leg.Distance).Sum();
            if (await _legRepository.CountDriverLegsAsync(id) > 0)
            {
                results.AveragePickupDelay = legs.Select(leg =>
                                                         leg.StartTime.Subtract(leg.PickupRequestTime.GetValueOrDefault(leg.StartTime)).TotalMinutes).Average();
            }

            results.TotalFares = legs.Select(leg => leg.Fare * leg.NumOfPassengersAboard).Sum();

            results.TotalCosts = legs.Select(leg => leg.GetTotalFuelCost()).Sum();

            driverStats[id] = results;
        }
コード例 #3
0
        // GET: Drivers/Details/5
        public async Task <IActionResult> Details(int?id)
        {
            var driver = await _driverRepository.GetAsync(id.Value);

            if (driver == null)
            {
                return(NotFound());
            }

            if (!User.Identity.IsAuthenticated)
            {
                return(Challenge());
            }

            var authResult = await _authorizationService.AuthorizeAsync(User, driver, "DriverInfoPolicy");

            if (!authResult.Succeeded)
            {
                return(Forbid());
            }

            await _driverStatisticsService.ComputeDriverStatistics(id.Value);

            // total pickups
            int pickups = _driverStatisticsService.GetPickupsBy(id.Value);

            ViewData["Pickups"] = pickups + " passenger pickup" + (pickups == 1 ? "" : "s");

            // total miles driven
            decimal milesDriven = _driverStatisticsService.GetMilesDrivenBy(id.Value);

            ViewData["MilesDriven"] = milesDriven + " mile" + ((milesDriven > 0 && milesDriven < 1) ? "" : "s") + " driven";

            // average pickup delay in minutes
            if (_driverStatisticsService.GetAveragePickupDelayBy(id.Value).HasValue)
            {
                double avgPickupDelay = _driverStatisticsService.GetAveragePickupDelayBy(id.Value).Value;
                ViewData["AveragePickupDelay"] = avgPickupDelay + " minute" + ((avgPickupDelay > 0 && avgPickupDelay < 1) ? "" : "s");
            }

            decimal totalFares = _driverStatisticsService.GetTotalFaresBy(id.Value);

            ViewData["TotalFares"] = "$" + totalFares;

            decimal totalCosts = _driverStatisticsService.GetTotalCostsBy(id.Value);

            ViewData["TotalCosts"] = "$" + totalCosts;

            if (id == null)
            {
                return(NotFound());
            }


            await _legRepository.ListForDriverAsync(id.Value);

            return(View(driver));
        }
コード例 #4
0
        /* Learn from legs with specified request times in a given date range */
        public async Task LearnFromDates(DateTime from, DateTime to)
        {
            IEnumerable <Leg> legs = await _legRepository.ListForDriverAsync(_DriverID, leg =>
                                                                             leg.StartTime.CompareTo(from) >= 0 &&
                                                                             leg.StartTime.CompareTo(to) < 0 &&
                                                                             leg.PickupRequestTime.HasValue);

            double[][] trainingInputs = legs.Select(leg =>
            {
                return(new double[]
                {
                    leg.StartTime.Subtract(leg.PickupRequestTime.Value).TotalMinutes,
                    leg.ArrivalTime.Subtract(leg.StartTime).TotalMinutes,
                    decimal.ToDouble(leg.Fare)
                });
            }).ToArray();

            _logisticRegressions.Clear();
            _logisticRegressions.AddRange(_logisticRegressionAnalyses.Select((lra, i) => {
                double[] trainingOutputs =
                    legs.Select(leg => leg.NumOfPassengersPickedUp > i + 1 ? 1.0 : 0.0).ToArray();
                return(lra.Learn(trainingInputs, trainingOutputs));
            }));
        }
コード例 #5
0
        /// <summary>
        /// Train on number of clusters using gap statistic
        /// </summary>
        private async Task ComputeK(int maxK = 100, int B = 10, int driverID = 0, DateTime?startDate = null, DateTime?endDate = null)
        {
            double[]   Wk      = new double[maxK];
            double[][] Wref_kb = new double[maxK][];
            double[]   Gap     = new double[maxK];
            double[]   sd      = new double[maxK];

            KMeansClusterCollection[] clusterCollections = new KMeansClusterCollection[maxK];

            // obtain dataset
            IEnumerable <Leg> legs = driverID == 0 ? await _legRepository.ListAsync()
                : await _legRepository.ListForDriverAsync(driverID);

            if (startDate == null)
            {
                startDate = DateTime.MinValue;
            }
            if (endDate == null)
            {
                endDate = DateTime.MaxValue;
            }
            legs = legs.Where(leg => leg.StartTime.CompareTo(startDate) >= 0 && leg.StartTime.CompareTo(endDate) < 0);
            double[][] dataset = GetDataset(legs);

            // first cluster the dataset varying K
            for (int k = 1; k <= maxK; k++)
            {
                KMeans kMeans = new KMeans(k)
                {
                    // distance function for geographic coordinates
                    Distance = new GeographicDistance()
                };

                clusterCollections[k - 1] = kMeans.Learn(dataset);
                double[][][] clusterData = ClusterPoints(dataset, k, clusterCollections[k - 1]);

                // sum of pairwise distances
                Wk[k - 1] = ComputeWk(clusterData, clusterCollections[k - 1]);
            }

            // then generate the reference data sets
            double[] lowerBounds   = new double[4];
            double[] boxDimensions = new double[4];
            for (int i = 0; i < 4; i++)
            {
                lowerBounds[i]   = dataset.Select(l => l[i]).Min();
                boxDimensions[i] = dataset.Select(l => l[i]).Max() - lowerBounds[i];
            }
            CorrectLongitudeBounds(lowerBounds, boxDimensions, 1);
            CorrectLongitudeBounds(lowerBounds, boxDimensions, 3);

            Random random = new Random();

            for (int k = 1; k <= maxK; k++)
            {
                Wref_kb[k - 1] = new double[B];
                for (int c = 0; c < B; c++)
                {
                    double[][] refDataset = new double[dataset.Length][];
                    for (int i = 0; i < refDataset.Length; i++)
                    {
                        double[] dataPoint = new double[4];
                        for (int j = 0; j < 4; j++)
                        {
                            dataPoint[j] = random.NextDouble() * boxDimensions[j] + lowerBounds[j];
                            if ((j == 1 || j == 3) && dataPoint[j] > 180)
                            {
                                dataPoint[j] -= 360;
                            }
                        }
                        refDataset[i] = dataPoint;
                    }

                    // cluster reference dataset
                    KMeans refKmeans = new KMeans(k);
                    refKmeans.Distance = new GeographicDistance();
                    KMeansClusterCollection refClusters = refKmeans.Learn(refDataset);

                    // points in each cluster
                    double[][][] refClusterData = ClusterPoints(refDataset, k, refClusters);

                    // compute pairwise distance sum for refDataset
                    Wref_kb[k - 1][c] = ComputeWk(refClusterData, refClusters);
                }

                // compute gap statistic
                double l_avg = Wref_kb[k - 1].Select(x => Log(x)).Average();
                Gap[k - 1] = l_avg - Log(Wk[k - 1]);
                sd[k - 1]  = Sqrt(Wref_kb[k - 1].Select(x => (Log(x) - l_avg) * (Log(x) - l_avg)).Average());

                // decide optimal k
                if (k > 1 && Gap[k - 2] >= Gap[k - 1] - sd[k - 1])
                {
                    ClusterCollection           = clusterCollections[k - 2];
                    NumberOfClustersLastChanged = DateTime.Now;
                    return;
                }
            }
        }