protected void test_ToothacheCavityCatchWeatherModel_Distributions( IFiniteProbabilityModel model) { AssignmentProposition asunny = new AssignmentProposition( ExampleRV.WEATHER_RV, "sunny"); AssignmentProposition acavity = new AssignmentProposition( ExampleRV.CAVITY_RV, true); // Should be able to run all the same queries for this independent // sub model. test_ToothacheCavityCatchModel_Distributions(model); // AIMA3e pg. 487 // P(sunny, Cavity) // Would be a two-element vector giving the probabilities of a sunny day // with a cavity and a sunny day with no cavity. assertArrayEquals(new double[] { 0.12, 0.48 }, model .priorDistribution(asunny, ExampleRV.CAVITY_RV).getValues(), DELTA_THRESHOLD); // AIMA3e pg. 488 (i.e. one element Vector returned) // P(sunny, cavity) assertArrayEquals(new double[] { 0.12 }, model .priorDistribution(asunny, acavity).getValues(), DELTA_THRESHOLD); // P(sunny AND cavity) assertArrayEquals(new double[] { 0.12 }, model .priorDistribution(new ConjunctiveProposition(asunny, acavity)) .getValues(), DELTA_THRESHOLD); // P(sunny) = <0.6> assertArrayEquals(new double[] { 0.6 }, model.priorDistribution(asunny).getValues(), DELTA_THRESHOLD); }
// // PROTECTED // protected void test_RollingPairFairDiceModel_Distributions(IFiniteProbabilityModel model) { AssignmentProposition ad1_1 = new AssignmentProposition(ExampleRV.DICE_1_RV, 1); ICategoricalDistribution dD1_1 = model.priorDistribution(ad1_1); assertArrayEquals(new double[] { 1.0 / 6.0 }, dD1_1.getValues(), DELTA_THRESHOLD); ICategoricalDistribution dPriorDice1 = model.priorDistribution(ExampleRV.DICE_1_RV); assertArrayEquals(new double[] { 1.0 / 6.0, 1.0 / 6.0, 1.0 / 6.0, 1.0 / 6.0, 1.0 / 6.0, 1.0 / 6.0 }, dPriorDice1.getValues(), DELTA_THRESHOLD); ICategoricalDistribution dPriorDice2 = model.priorDistribution(ExampleRV.DICE_2_RV); assertArrayEquals(new double[] { 1.0 / 6.0, 1.0 / 6.0, 1.0 / 6.0, 1.0 / 6.0, 1.0 / 6.0, 1.0 / 6.0 }, dPriorDice2.getValues(), DELTA_THRESHOLD); ICategoricalDistribution dJointDice1Dice2 = model.jointDistribution(ExampleRV.DICE_1_RV, ExampleRV.DICE_2_RV); Assert.AreEqual(36, dJointDice1Dice2.getValues().Length); for (int i = 0; i < dJointDice1Dice2.getValues().Length; i++) { Assert.AreEqual(1.0 / 36.0, dJointDice1Dice2.getValues()[i], DELTA_THRESHOLD); } ICategoricalDistribution dJointDice2Dice1 = model.jointDistribution(ExampleRV.DICE_2_RV, ExampleRV.DICE_1_RV); Assert.AreEqual(36, dJointDice2Dice1.getValues().Length); for (int i = 0; i < dJointDice2Dice1.getValues().Length; i++) { Assert.AreEqual(1.0 / 36.0, dJointDice2Dice1.getValues()[i], DELTA_THRESHOLD); } // // Test Sets of events IntegerSumProposition total11 = new IntegerSumProposition("Total", new FiniteIntegerDomain(11), ExampleRV.DICE_1_RV, ExampleRV.DICE_2_RV); // P<>(Total = 11) = <2.0/36.0> assertArrayEquals(new double[] { 2.0 / 36.0 }, model.priorDistribution(total11).getValues(), DELTA_THRESHOLD); // P<>(Dice1, Total = 11) // = <0.0, 0.0, 0.0, 0.0, 1.0/36.0, 1.0/36.0> assertArrayEquals(new double[] { 0, 0, 0, 0, 1.0 / 36.0, 1.0 / 36.0 }, model.priorDistribution(ExampleRV.DICE_1_RV, total11) .getValues(), DELTA_THRESHOLD); EquivalentProposition doubles = new EquivalentProposition("Doubles", ExampleRV.DICE_1_RV, ExampleRV.DICE_2_RV); // P(Doubles) = <1.0/6.0> assertArrayEquals(new double[] { 1.0 / 6.0 }, model .priorDistribution(doubles).getValues(), DELTA_THRESHOLD); // // Test posterior // // P<>(Dice1, Total = 11) // = <0.0, 0.0, 0.0, 0.0, 0.5, 0.5> assertArrayEquals(new double[] { 0, 0, 0, 0, 0.5, 0.5 }, model .posteriorDistribution(ExampleRV.DICE_1_RV, total11) .getValues(), DELTA_THRESHOLD); // P<>(Dice1 | Doubles) = <1/6, 1/6, 1/6, 1/6, 1/6, 1/6> assertArrayEquals(new double[] { 1.0 / 6.0, 1.0 / 6.0, 1.0 / 6.0, 1.0 / 6.0, 1.0 / 6.0, 1.0 / 6.0 }, model .posteriorDistribution(ExampleRV.DICE_1_RV, doubles) .getValues(), DELTA_THRESHOLD); ICategoricalDistribution dPosteriorDice1GivenDice2 = model .posteriorDistribution(ExampleRV.DICE_1_RV, ExampleRV.DICE_2_RV); Assert.AreEqual(36, dPosteriorDice1GivenDice2.getValues().Length); for (int i = 0; i < dPosteriorDice1GivenDice2.getValues().Length; i++) { Assert.AreEqual(1.0 / 6.0, dPosteriorDice1GivenDice2.getValues()[i], DELTA_THRESHOLD); } ICategoricalDistribution dPosteriorDice2GivenDice1 = model .posteriorDistribution(ExampleRV.DICE_2_RV, ExampleRV.DICE_1_RV); Assert.AreEqual(36, dPosteriorDice2GivenDice1.getValues().Length); for (int i = 0; i < dPosteriorDice2GivenDice1.getValues().Length; i++) { Assert.AreEqual(1.0 / 6.0, dPosteriorDice2GivenDice1.getValues()[i], DELTA_THRESHOLD); } }
protected void test_ToothacheCavityCatchModel_Distributions(IFiniteProbabilityModel model) { AssignmentProposition atoothache = new AssignmentProposition(ExampleRV.TOOTHACHE_RV, true); AssignmentProposition anottoothache = new AssignmentProposition(ExampleRV.TOOTHACHE_RV, false); AssignmentProposition acatch = new AssignmentProposition(ExampleRV.CATCH_RV, true); AssignmentProposition anotcatch = new AssignmentProposition(ExampleRV.CATCH_RV, false); // AIMA3e pg. 493 // P<>(Cavity | toothache) = <0.6, 0.4> assertArrayEquals(new double[] { 0.6, 0.4 }, model .posteriorDistribution(ExampleRV.CAVITY_RV, atoothache) .getValues(), DELTA_THRESHOLD); // AIMA3e pg. 497 // P<>(Cavity | toothache AND catch) = <0.871, 0.129> assertArrayEquals(new double[] { 0.8709677419354839, 0.12903225806451615 }, model.posteriorDistribution(ExampleRV.CAVITY_RV, atoothache, acatch).getValues(), DELTA_THRESHOLD); // AIMA3e pg. 498 // (13.17) // P<>(toothache AND catch | Cavity) // = P<>(toothache | Cavity)P<>(catch | Cavity) ConjunctiveProposition toothacheAndCatch = new ConjunctiveProposition(atoothache, acatch); assertArrayEquals(model.posteriorDistribution(toothacheAndCatch, ExampleRV.CAVITY_RV).getValues(), model.posteriorDistribution(atoothache, ExampleRV.CAVITY_RV) .multiplyBy( model.posteriorDistribution(acatch, ExampleRV.CAVITY_RV)).getValues(), DELTA_THRESHOLD); // (13.18) // P<>(Cavity | toothache AND catch) // = αP<>(toothache | Cavity)P<>(catch | Cavity)P(Cavity) assertArrayEquals(model.posteriorDistribution(ExampleRV.CAVITY_RV, toothacheAndCatch).getValues(), model.posteriorDistribution(atoothache, ExampleRV.CAVITY_RV) .multiplyBy( model.posteriorDistribution(acatch, ExampleRV.CAVITY_RV)) .multiplyBy( model.priorDistribution(ExampleRV.CAVITY_RV)) .normalize().getValues(), DELTA_THRESHOLD); // (13.19) // P<>(Toothache, Catch | Cavity) // = P<>(Toothache | Cavity)P<>(Catch | Cavity) ConjunctiveProposition toothacheAndCatchRV = new ConjunctiveProposition(ExampleRV.TOOTHACHE_RV, ExampleRV.CATCH_RV); assertArrayEquals(model.posteriorDistribution(toothacheAndCatchRV, ExampleRV.CAVITY_RV).getValues(), model.posteriorDistribution(ExampleRV.TOOTHACHE_RV, ExampleRV.CAVITY_RV) .multiplyByPOS( model.posteriorDistribution(ExampleRV.CATCH_RV, ExampleRV.CAVITY_RV), ExampleRV.TOOTHACHE_RV, ExampleRV.CATCH_RV, ExampleRV.CAVITY_RV).getValues(), DELTA_THRESHOLD); // (product rule) // P<>(Toothache, Catch, Cavity) // = P<>(Toothache, Catch | Cavity)P<>(Cavity) assertArrayEquals(model.priorDistribution(ExampleRV.TOOTHACHE_RV, ExampleRV.CATCH_RV, ExampleRV.CAVITY_RV).getValues(), model.posteriorDistribution(toothacheAndCatchRV, ExampleRV.CAVITY_RV) .multiplyBy( model.priorDistribution(ExampleRV.CAVITY_RV)) .getValues(), DELTA_THRESHOLD); // (using 13.19) // P<>(Toothache, Catch | Cavity)P<>(Cavity) // = P<>(Toothache | Cavity)P<>(Catch | Cavity)P<>(Cavity) assertArrayEquals(model.posteriorDistribution(toothacheAndCatchRV, ExampleRV.CAVITY_RV) .multiplyBy( model.priorDistribution(ExampleRV.CAVITY_RV)) .getValues(), model.posteriorDistribution(ExampleRV.TOOTHACHE_RV, ExampleRV.CAVITY_RV) .multiplyByPOS( model.posteriorDistribution(ExampleRV.CATCH_RV, ExampleRV.CAVITY_RV) .multiplyBy( model.priorDistribution(ExampleRV.CAVITY_RV)), ExampleRV.TOOTHACHE_RV, ExampleRV.CATCH_RV, ExampleRV.CAVITY_RV).getValues(), DELTA_THRESHOLD); // // P<>(Toothache, Catch, Cavity) // = P<>(Toothache | Cavity)P<>(Catch | Cavity)P<>(Cavity) assertArrayEquals(model.priorDistribution(ExampleRV.TOOTHACHE_RV, ExampleRV.CATCH_RV, ExampleRV.CAVITY_RV).getValues(), model.posteriorDistribution(ExampleRV.TOOTHACHE_RV, ExampleRV.CAVITY_RV) .multiplyByPOS( model.posteriorDistribution(ExampleRV.CATCH_RV, ExampleRV.CAVITY_RV), ExampleRV.TOOTHACHE_RV, ExampleRV.CATCH_RV, ExampleRV.CAVITY_RV) .multiplyBy( model.priorDistribution(ExampleRV.CAVITY_RV)) .getValues(), DELTA_THRESHOLD); // AIMA3e pg. 496 // General case of Bayes' Rule // P<>(Y | X) = P<>(X | Y)P<>(Y)/P<>(X) // Note: Performing in this order - // P<>(Y | X) = (P<>(Y)P<>(X | Y))/P<>(X) // as default multiplication of distributions are not commutative (could // also use pointwiseProductPOS() to specify the order). assertArrayEquals(model.posteriorDistribution(ExampleRV.CAVITY_RV, ExampleRV.TOOTHACHE_RV).getValues(), model.priorDistribution(ExampleRV.CAVITY_RV) .multiplyBy( model.posteriorDistribution( ExampleRV.TOOTHACHE_RV, ExampleRV.CAVITY_RV)) .divideBy( model.priorDistribution(ExampleRV.TOOTHACHE_RV)) .getValues(), DELTA_THRESHOLD); assertArrayEquals( model.posteriorDistribution(ExampleRV.CAVITY_RV, ExampleRV.CATCH_RV).getValues(), model.priorDistribution(ExampleRV.CAVITY_RV) .multiplyBy( model.posteriorDistribution(ExampleRV.CATCH_RV, ExampleRV.CAVITY_RV)) .divideBy(model.priorDistribution(ExampleRV.CATCH_RV)) .getValues(), DELTA_THRESHOLD); // General Bayes' Rule conditionalized on background evidence e (13.3) // P<>(Y | X, e) = P<>(X | Y, e)P<>(Y|e)/P<>(X | e) // Note: Performing in this order - // P<>(Y | X, e) = (P<>(Y|e)P<>(X | Y, e)))/P<>(X | e) // as default multiplication of distributions are not commutative (could // also use pointwiseProductPOS() to specify the order). assertArrayEquals( model.posteriorDistribution(ExampleRV.CAVITY_RV, ExampleRV.TOOTHACHE_RV, acatch).getValues(), model.posteriorDistribution(ExampleRV.CAVITY_RV, acatch) .multiplyBy( model.posteriorDistribution( ExampleRV.TOOTHACHE_RV, ExampleRV.CAVITY_RV, acatch)) .divideBy( model.posteriorDistribution( ExampleRV.TOOTHACHE_RV, acatch)) .getValues(), DELTA_THRESHOLD); // assertArrayEquals( model.posteriorDistribution(ExampleRV.CAVITY_RV, ExampleRV.TOOTHACHE_RV, anotcatch).getValues(), model.posteriorDistribution(ExampleRV.CAVITY_RV, anotcatch) .multiplyBy( model.posteriorDistribution( ExampleRV.TOOTHACHE_RV, ExampleRV.CAVITY_RV, anotcatch)) .divideBy( model.posteriorDistribution( ExampleRV.TOOTHACHE_RV, anotcatch)) .getValues(), DELTA_THRESHOLD); // assertArrayEquals( model.posteriorDistribution(ExampleRV.CAVITY_RV, ExampleRV.CATCH_RV, atoothache).getValues(), model.posteriorDistribution(ExampleRV.CAVITY_RV, atoothache) .multiplyBy( model.posteriorDistribution(ExampleRV.CATCH_RV, ExampleRV.CAVITY_RV, atoothache)) .divideBy( model.posteriorDistribution(ExampleRV.CATCH_RV, atoothache)).getValues(), DELTA_THRESHOLD); assertArrayEquals( model.posteriorDistribution(ExampleRV.CAVITY_RV, ExampleRV.CATCH_RV, anottoothache).getValues(), model.posteriorDistribution(ExampleRV.CAVITY_RV, anottoothache) .multiplyBy( model.posteriorDistribution(ExampleRV.CATCH_RV, ExampleRV.CAVITY_RV, anottoothache)) .divideBy( model.posteriorDistribution(ExampleRV.CATCH_RV, anottoothache)).getValues(), DELTA_THRESHOLD); }