public static double OptimizeConstants(ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, ISymbolicExpressionTree tree, IRegressionProblemData problemData, IEnumerable <int> rows, bool applyLinearScaling, int maxIterations, bool updateVariableWeights = true, double lowerEstimationLimit = double.MinValue, double upperEstimationLimit = double.MaxValue, bool updateConstantsInTree = true, Action <double[], double, object> iterationCallback = null, EvaluationsCounter counter = null) { // numeric constants in the tree become variables for constant opt // variables in the tree become parameters (fixed values) for constant opt // for each parameter (variable in the original tree) we store the // variable name, variable value (for factor vars) and lag as a DataForVariable object. // A dictionary is used to find parameters double[] initialConstants; var parameters = new List <TreeToAutoDiffTermConverter.DataForVariable>(); TreeToAutoDiffTermConverter.ParametricFunction func; TreeToAutoDiffTermConverter.ParametricFunctionGradient func_grad; if (!TreeToAutoDiffTermConverter.TryConvertToAutoDiff(tree, updateVariableWeights, applyLinearScaling, out parameters, out initialConstants, out func, out func_grad)) { throw new NotSupportedException("Could not optimize constants of symbolic expression tree due to not supported symbols used in the tree."); } if (parameters.Count == 0) { return(0.0); // gkronber: constant expressions always have a R² of 0.0 } var parameterEntries = parameters.ToArray(); // order of entries must be the same for x //extract inital constants double[] c; if (applyLinearScaling) { c = new double[initialConstants.Length + 2]; c[0] = 0.0; c[1] = 1.0; Array.Copy(initialConstants, 0, c, 2, initialConstants.Length); } else { c = (double[])initialConstants.Clone(); } double originalQuality = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(interpreter, tree, lowerEstimationLimit, upperEstimationLimit, problemData, rows, applyLinearScaling); if (counter == null) { counter = new EvaluationsCounter(); } var rowEvaluationsCounter = new EvaluationsCounter(); alglib.lsfitstate state; alglib.lsfitreport rep; int retVal; IDataset ds = problemData.Dataset; double[,] x = new double[rows.Count(), parameters.Count]; int row = 0; foreach (var r in rows) { int col = 0; foreach (var info in parameterEntries) { if (ds.VariableHasType <double>(info.variableName)) { x[row, col] = ds.GetDoubleValue(info.variableName, r + info.lag); } else if (ds.VariableHasType <string>(info.variableName)) { x[row, col] = ds.GetStringValue(info.variableName, r) == info.variableValue ? 1 : 0; } else { throw new InvalidProgramException("found a variable of unknown type"); } col++; } row++; } double[] y = ds.GetDoubleValues(problemData.TargetVariable, rows).ToArray(); int n = x.GetLength(0); int m = x.GetLength(1); int k = c.Length; alglib.ndimensional_pfunc function_cx_1_func = CreatePFunc(func); alglib.ndimensional_pgrad function_cx_1_grad = CreatePGrad(func_grad); alglib.ndimensional_rep xrep = (p, f, obj) => iterationCallback(p, f, obj); try { alglib.lsfitcreatefg(x, y, c, n, m, k, false, out state); alglib.lsfitsetcond(state, 0.0, 0.0, maxIterations); alglib.lsfitsetxrep(state, iterationCallback != null); //alglib.lsfitsetgradientcheck(state, 0.001); alglib.lsfitfit(state, function_cx_1_func, function_cx_1_grad, xrep, rowEvaluationsCounter); alglib.lsfitresults(state, out retVal, out c, out rep); } catch (ArithmeticException) { return(originalQuality); } catch (alglib.alglibexception) { return(originalQuality); } counter.FunctionEvaluations += rowEvaluationsCounter.FunctionEvaluations / n; counter.GradientEvaluations += rowEvaluationsCounter.GradientEvaluations / n; //retVal == -7 => constant optimization failed due to wrong gradient if (retVal != -7) { if (applyLinearScaling) { var tmp = new double[c.Length - 2]; Array.Copy(c, 2, tmp, 0, tmp.Length); UpdateConstants(tree, tmp, updateVariableWeights); } else { UpdateConstants(tree, c, updateVariableWeights); } } var quality = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(interpreter, tree, lowerEstimationLimit, upperEstimationLimit, problemData, rows, applyLinearScaling); if (!updateConstantsInTree) { UpdateConstants(tree, initialConstants, updateVariableWeights); } if (originalQuality - quality > 0.001 || double.IsNaN(quality)) { UpdateConstants(tree, initialConstants, updateVariableWeights); return(originalQuality); } return(quality); }