public static void MeerKATFull() { var frequencies = FitsIO.ReadFrequencies(@"C:\dev\GitHub\p9-data\large\fits\meerkat_tiny\freq.fits"); var uvw = FitsIO.ReadUVW(@"C:\dev\GitHub\p9-data\large\fits\meerkat_tiny\uvw0.fits"); var flags = FitsIO.ReadFlags(@"C:\dev\GitHub\p9-data\large\fits\meerkat_tiny\flags0.fits", uvw.GetLength(0), uvw.GetLength(1), frequencies.Length); double norm = 2.0; var visibilities = FitsIO.ReadVisibilities(@"C:\dev\GitHub\p9-data\large\fits\meerkat_tiny\vis0.fits", uvw.GetLength(0), uvw.GetLength(1), frequencies.Length, norm); for (int i = 1; i < 8; i++) { var uvw0 = FitsIO.ReadUVW(@"C:\dev\GitHub\p9-data\large\fits\meerkat_tiny\uvw" + i + ".fits"); var flags0 = FitsIO.ReadFlags(@"C:\dev\GitHub\p9-data\large\fits\meerkat_tiny\flags" + i + ".fits", uvw0.GetLength(0), uvw0.GetLength(1), frequencies.Length); var visibilities0 = FitsIO.ReadVisibilities(@"C:\dev\GitHub\p9-data\large\fits\meerkat_tiny\vis" + i + ".fits", uvw0.GetLength(0), uvw0.GetLength(1), frequencies.Length, norm); uvw = FitsIO.Stitch(uvw, uvw0); flags = FitsIO.Stitch(flags, flags0); visibilities = FitsIO.Stitch(visibilities, visibilities0); } /* * var frequencies = FitsIO.ReadFrequencies(@"freq.fits"); * var uvw = FitsIO.ReadUVW("uvw0.fits"); * var flags = FitsIO.ReadFlags("flags0.fits", uvw.GetLength(0), uvw.GetLength(1), frequencies.Length); * double norm = 2.0; * var visibilities = FitsIO.ReadVisibilities("vis0.fits", uvw.GetLength(0), uvw.GetLength(1), frequencies.Length, norm); */ var visCount2 = 0; for (int i = 0; i < flags.GetLength(0); i++) { for (int j = 0; j < flags.GetLength(1); j++) { for (int k = 0; k < flags.GetLength(2); k++) { if (!flags[i, j, k]) { visCount2++; } } } } var visibilitiesCount = visCount2; int gridSize = 1024; int subgridsize = 16; int kernelSize = 4; //cell = image / grid int max_nr_timesteps = 512; double scaleArcSec = 2.5 / 3600.0 * PI / 180.0; var watchTotal = new Stopwatch(); var watchForward = new Stopwatch(); var watchBackwards = new Stopwatch(); var watchDeconv = new Stopwatch(); watchTotal.Start(); var c = new GriddingConstants(visibilitiesCount, gridSize, subgridsize, kernelSize, max_nr_timesteps, (float)scaleArcSec, 1, 0.0f); var metadata = Partitioner.CreatePartition(c, uvw, frequencies); var psf = IDG.CalculatePSF(c, metadata, uvw, flags, frequencies); FitsIO.Write(psf, "psf.fits"); var psfCut = CutImg(psf, 2); FitsIO.Write(psfCut, "psfCut.fits"); var maxSidelobe = CommonDeprecated.PSF.CalcMaxSidelobe(psf); var psfCorrelated = CommonDeprecated.PSF.CalculateFourierCorrelation(psfCut, c.GridSize, c.GridSize); var xImage = new double[gridSize, gridSize]; var residualVis = visibilities; var maxCycle = 2; for (int cycle = 0; cycle < maxCycle; cycle++) { watchForward.Start(); var dirtyImage = IDG.ToImage(c, metadata, residualVis, uvw, frequencies); watchForward.Stop(); FitsIO.Write(dirtyImage, "dirty" + cycle + ".fits"); watchDeconv.Start(); var sideLobe = maxSidelobe * GetMax(dirtyImage); Console.WriteLine("sideLobeLevel: " + sideLobe); var b = CommonDeprecated.Residuals.CalculateBMap(dirtyImage, psfCorrelated, psfCut.GetLength(0), psfCut.GetLength(1)); var lambda = 0.8; var alpha = 0.05; var currentLambda = Math.Max(1.0 / alpha * sideLobe, lambda); var converged = SerialCDReference.DeconvolvePath(xImage, b, psfCut, currentLambda, 4.0, alpha, 5, 1000, 2e-5); //var converged = GreedyCD2.Deconvolve(xImage, b, psfCut, currentLambda, alpha, 5000); if (converged) { Console.WriteLine("-----------------------------CONVERGED!!!! with lambda " + currentLambda + "------------------------"); } else { Console.WriteLine("-------------------------------not converged with lambda " + currentLambda + "----------------------"); } watchDeconv.Stop(); FitsIO.Write(xImage, "xImage_" + cycle + ".fits"); watchBackwards.Start(); FFT.Shift(xImage); var xGrid = FFT.Forward(xImage); FFT.Shift(xImage); var modelVis = IDG.DeGrid(c, metadata, xGrid, uvw, frequencies); residualVis = Visibilities.Substract(visibilities, modelVis, flags); watchBackwards.Stop(); } watchBackwards.Stop(); watchTotal.Stop(); var timetable = "total elapsed: " + watchTotal.Elapsed; timetable += "\n" + "idg forward elapsed: " + watchForward.Elapsed; timetable += "\n" + "idg backwards elapsed: " + watchBackwards.Elapsed; timetable += "\n" + "devonvolution: " + watchDeconv.Elapsed; File.WriteAllText("watches_single.txt", timetable); }
public static void DebugSimulatedMixed() { var frequencies = FitsIO.ReadFrequencies(@"C:\dev\GitHub\p9-data\small\fits\simulation_mixed\freq.fits"); var uvw = FitsIO.ReadUVW(@"C:\dev\GitHub\p9-data\small\fits\simulation_mixed\uvw.fits"); var flags = new bool[uvw.GetLength(0), uvw.GetLength(1), frequencies.Length]; //completely unflagged dataset double norm = 2.0; var visibilities = FitsIO.ReadVisibilities(@"C:\dev\GitHub\p9-data\small\fits\simulation_mixed\vis.fits", uvw.GetLength(0), uvw.GetLength(1), frequencies.Length, norm); var visibilitiesCount = visibilities.Length; int gridSize = 1024; int subgridsize = 16; int kernelSize = 4; //cell = image / grid int max_nr_timesteps = 512; double scaleArcSec = 0.5 / 3600.0 * PI / 180.0; var watchTotal = new Stopwatch(); var watchForward = new Stopwatch(); var watchBackwards = new Stopwatch(); var watchDeconv = new Stopwatch(); watchTotal.Start(); var c = new GriddingConstants(visibilitiesCount, gridSize, subgridsize, kernelSize, max_nr_timesteps, (float)scaleArcSec, 1, 0.0f); var metadata = Partitioner.CreatePartition(c, uvw, frequencies); var psf = IDG.CalculatePSF(c, metadata, uvw, flags, frequencies); FitsIO.Write(psf, "psf.fits"); var psfCut = CutImg(psf, 2); FitsIO.Write(psfCut, "psfCut.fits"); var maxSidelobe = CommonDeprecated.PSF.CalcMaxSidelobe(psf); var xImage = new double[gridSize, gridSize]; var residualVis = visibilities; var maxCycle = 10; for (int cycle = 0; cycle < maxCycle; cycle++) { watchForward.Start(); var dirtyImage = IDG.ToImage(c, metadata, residualVis, uvw, frequencies); watchForward.Stop(); FitsIO.Write(dirtyImage, "dirty" + cycle + ".fits"); watchDeconv.Start(); var sideLobe = maxSidelobe * GetMax(dirtyImage); Console.WriteLine("sideLobeLevel: " + sideLobe); var PsfCorrelation = CommonDeprecated.PSF.CalculateFourierCorrelation(psfCut, c.GridSize, c.GridSize); var b = CommonDeprecated.Residuals.CalculateBMap(dirtyImage, PsfCorrelation, psfCut.GetLength(0), psfCut.GetLength(1)); var lambda = 100.0; var alpha = 0.95; var currentLambda = Math.Max(1.0 / alpha * sideLobe, lambda); var converged = SerialCDReference.DeconvolvePath(xImage, b, psfCut, currentLambda, 5.0, alpha, 5, 6000, 1e-3); //var converged = GreedyCD2.Deconvolve(xImage, b, psfCut, currentLambda, alpha, 5000); if (converged) { Console.WriteLine("-----------------------------CONVERGED!!!! with lambda " + currentLambda + "------------------------"); } else { Console.WriteLine("-------------------------------not converged with lambda " + currentLambda + "----------------------"); } watchDeconv.Stop(); FitsIO.Write(xImage, "xImage_" + cycle + ".fits"); watchBackwards.Start(); FFT.Shift(xImage); var xGrid = FFT.Forward(xImage); FFT.Shift(xImage); var modelVis = IDG.DeGrid(c, metadata, xGrid, uvw, frequencies); residualVis = Visibilities.Substract(visibilities, modelVis, flags); watchBackwards.Stop(); } watchBackwards.Stop(); watchTotal.Stop(); var timetable = "total elapsed: " + watchTotal.Elapsed; timetable += "\n" + "idg forward elapsed: " + watchForward.Elapsed; timetable += "\n" + "idg backwards elapsed: " + watchBackwards.Elapsed; timetable += "\n" + "devonvolution: " + watchDeconv.Elapsed; File.WriteAllText("watches_single.txt", timetable); }