public IWeightTensor Perform(IWeightTensor inputQ, IWeightTensor keyMask, int batchSize, IComputeGraph graph) { if (m_sharedQKV == false) { throw new ArgumentException($"Layer '{m_name}' is not in shared QKV mode, please call another Perform function with three separated input tensors."); } using (IComputeGraph g = graph.CreateSubGraph($"{m_name}_MultiHeadAttention_SharedQKV")) { int seqLenQ = inputQ.Rows / batchSize; IWeightTensor inputQNorm = layerNormQ.Norm(inputQ, g); //Input projections float scale = 1.0f / (float)(m_inputDim); IWeightTensor mulQ, mulK, mulV; using (IWeightTensor inputQNormView = g.View(inputQNorm, dims: new long[] { 1, inputQ.Rows, inputQ.Columns })) { using (IWeightTensor inputQNormViewExp = g.Expand(inputQNormView, dims: new long[] { 3, inputQ.Rows, inputQ.Columns })) { using (IWeightTensor mulQKV = g.MulBatch(inputQNormViewExp, QKV, 3, scale)) { mulQ = g.Select(mulQKV, 0, 0); mulK = g.Select(mulQKV, 0, 1); mulV = g.Select(mulQKV, 0, 2); } } } IWeightTensor allQ = g.View(mulQ, dims: new long[] { batchSize, seqLenQ, m_multiHeadNum, m_d }); IWeightTensor allK = g.View(mulK, dims: new long[] { batchSize, seqLenQ, m_multiHeadNum, m_d }); IWeightTensor allV = g.View(mulV, dims: new long[] { batchSize, seqLenQ, m_multiHeadNum, m_d }); //Multi-head attentions IWeightTensor Qs = g.View(g.Permute(allQ, 2, 0, 1, 3), dims: new long[] { m_multiHeadNum *batchSize, seqLenQ, m_d }); IWeightTensor Ks = g.View(g.Permute(allK, 2, 0, 3, 1), dims: new long[] { m_multiHeadNum *batchSize, m_d, seqLenQ }); IWeightTensor Vs = g.View(g.Permute(allV, 2, 0, 1, 3), dims: new long[] { m_multiHeadNum *batchSize, seqLenQ, m_d }); // Scaled softmax scale = 1.0f / (float)(m_d); IWeightTensor attn = g.MulBatch(Qs, Ks, m_multiHeadNum * batchSize, scale); IWeightTensor softmax = g.Softmax(attn, keyMask, inPlace: true); IWeightTensor o = g.View(g.MulBatch(softmax, Vs, m_multiHeadNum * batchSize), dims: new long[] { m_multiHeadNum, batchSize, seqLenQ, m_d }); IWeightTensor W = g.View(g.Permute(o, 1, 2, 0, 3), dims: new long[] { batchSize *seqLenQ, m_multiHeadNum *m_d }); // Output projection IWeightTensor finalAttResults = g.Dropout(g.Affine(W, W0, b0), batchSize, m_dropoutRatio, inPlace: true); return(graph.Add(finalAttResults, inputQ)); } }
/// <summary> /// Scaled multi-heads attention component with skip connectioned feed forward layers /// </summary> /// <param name="inputQ">The input Q tensor</param> /// <param name="inputK">The input K tensor</param> /// <param name="inputV">The input V tensor</param> /// <param name="batchSize">Batch size of input data set</param> /// <param name="graph">The instance of computing graph</param> /// <returns>Transformered output tensor</returns> public IWeightTensor Perform(IWeightTensor inputQ, IWeightTensor inputK, IWeightTensor inputV, IWeightTensor keyMask, int batchSize, IComputeGraph graph) { using (IComputeGraph g = graph.CreateSubGraph($"{m_name}_MultiHeadAttention")) { int seqLenQ = inputQ.Rows / batchSize; // SeqLenK must be euqal to SeqLenV int seqLenK = inputK.Rows / batchSize; int seqLenV = inputV.Rows / batchSize; IWeightTensor inputQNorm = layerNorm1.Norm(inputQ, g); IWeightTensor inputKNorm = (inputK == inputQ) ? inputQNorm : inputK; // layerNorm1.Norm(inputK, g); IWeightTensor inputVNorm = (inputK == inputV) ? inputKNorm : inputV; // layerNorm1.Norm(inputV, g); //Input projections IWeightTensor allQ = g.View(g.Affine(inputQNorm, Q, Qb), dims: new long[] { batchSize, seqLenQ, m_multiHeadNum, m_d }); IWeightTensor allK = g.View(g.Affine(inputKNorm, K, Kb), dims: new long[] { batchSize, seqLenK, m_multiHeadNum, m_d }); IWeightTensor allV = g.View(g.Affine(inputVNorm, V, Vb), dims: new long[] { batchSize, seqLenV, m_multiHeadNum, m_d }); //Multi-head attentions IWeightTensor Qs = g.View(g.Permute(allQ, 2, 0, 1, 3), dims: new long[] { m_multiHeadNum *batchSize, seqLenQ, m_d }); IWeightTensor Ks = g.View(g.Permute(allK, 2, 0, 3, 1), dims: new long[] { m_multiHeadNum *batchSize, m_d, seqLenK }); IWeightTensor Vs = g.View(g.Permute(allV, 2, 0, 1, 3), dims: new long[] { m_multiHeadNum *batchSize, seqLenV, m_d }); // Scaled softmax float scale = 1.0f / (float)Math.Sqrt(m_d); IWeightTensor attn = g.MulBatch(Qs, Ks, m_multiHeadNum * batchSize, scale); IWeightTensor attn2 = g.View(attn, dims: new long[] { m_multiHeadNum *batchSize *seqLenQ, seqLenK }); if (keyMask != null) { // attn2 = g.Add(attn2, mask, runGradient2: false); attn2 = g.MaskFill(attn2, keyMask, -1e9f); } IWeightTensor softmax = g.Softmax(attn2, inPlace: true); IWeightTensor softmax2 = g.View(softmax, dims: new long[] { m_multiHeadNum *batchSize, seqLenQ, seqLenK }); IWeightTensor o = g.View(g.MulBatch(softmax2, Vs, m_multiHeadNum * batchSize), dims: new long[] { m_multiHeadNum, batchSize, seqLenQ, m_d }); IWeightTensor W = g.View(g.Permute(o, 1, 2, 0, 3), dims: new long[] { batchSize *seqLenQ, m_multiHeadNum *m_d }); // Output projection IWeightTensor finalAttResults = g.Dropout(g.Affine(W, W0, b0), batchSize, m_dropoutRatio, inPlace: true); return(graph.Add(finalAttResults, inputQ)); } }
/// <summary> /// Scaled multi-heads attention component with skip connectioned feed forward layers /// </summary> /// <param name="input">The input tensor</param> /// <param name="g">The instance of computing graph</param> /// <returns></returns> public IWeightTensor Perform(IWeightTensor input, IComputeGraph graph) { IComputeGraph g = graph.CreateSubGraph(m_name); var seqLen = input.Rows / m_batchSize; //Input projections var allQ = g.View(Q.Process(input, g), m_batchSize, seqLen, m_multiHeadNum, m_d); var allK = g.View(K.Process(input, g), m_batchSize, seqLen, m_multiHeadNum, m_d); var allV = g.View(V.Process(input, g), m_batchSize, seqLen, m_multiHeadNum, m_d); //Multi-head attentions var Qs = g.View(g.Permute(allQ, 2, 0, 1, 3), m_multiHeadNum * m_batchSize, seqLen, m_d); var Ks = g.View(g.Permute(allK, 2, 0, 3, 1), m_multiHeadNum * m_batchSize, m_d, seqLen); var Vs = g.View(g.Permute(allV, 2, 0, 1, 3), m_multiHeadNum * m_batchSize, seqLen, m_d); // Scaled softmax float scale = 1.0f / (float)Math.Sqrt(m_d); var attn = g.MulBatch(Qs, Ks, m_multiHeadNum * m_batchSize, scale); var attn2 = g.View(attn, m_multiHeadNum * m_batchSize * seqLen, seqLen); var softmax = g.Softmax(attn2); var softmax2 = g.View(softmax, m_multiHeadNum * m_batchSize, seqLen, seqLen); var o = g.View(g.MulBatch(softmax2, Vs, m_multiHeadNum * m_batchSize), m_multiHeadNum, m_batchSize, seqLen, m_d); var W = g.View(g.Permute(o, 1, 2, 0, 3), m_batchSize * seqLen, m_multiHeadNum * m_d); // Output projection var finalAttResults = g.Affine(W, W0, b0); //Skip connection and layer normaliztion var addedAttResult = g.Add(finalAttResults, input); var normAddedAttResult = layerNorm1.Process(addedAttResult, g); //Feed forward var ffnResult = feedForwardLayer1.Process(normAddedAttResult, g); var reluFFNResult = g.Relu(ffnResult); var ffn2Result = feedForwardLayer2.Process(reluFFNResult, g); //Skip connection and layer normaliztion var addFFNResult = g.Add(ffn2Result, normAddedAttResult); var normAddFFNResult = layerNorm2.Process(addFFNResult, g); return(normAddFFNResult); }
/// <summary> /// Scaled multi-heads attention component with skip connectioned feed forward layers /// </summary> /// <param name="input">The input tensor</param> /// <param name="g">The instance of computing graph</param> /// <returns></returns> public IWeightTensor Perform(IWeightTensor input, int batchSize, IComputeGraph graph) { using (IComputeGraph g = graph.CreateSubGraph(m_name)) { int seqLen = input.Rows / batchSize; IWeightTensor nInput = layerNorm1.Norm(input, g); //Input projections IWeightTensor allQ = g.View(g.Affine(nInput, Q, Qb), batchSize, seqLen, m_multiHeadNum, m_d); IWeightTensor allK = g.View(g.Affine(nInput, K, Kb), batchSize, seqLen, m_multiHeadNum, m_d); IWeightTensor allV = g.View(g.Affine(nInput, V, Vb), batchSize, seqLen, m_multiHeadNum, m_d); //Multi-head attentions IWeightTensor Qs = g.View(g.Permute(allQ, 2, 0, 1, 3), m_multiHeadNum * batchSize, seqLen, m_d); IWeightTensor Ks = g.View(g.Permute(allK, 2, 0, 3, 1), m_multiHeadNum * batchSize, m_d, seqLen); IWeightTensor Vs = g.View(g.Permute(allV, 2, 0, 1, 3), m_multiHeadNum * batchSize, seqLen, m_d); // Scaled softmax float scale = 1.0f / (float)Math.Sqrt(m_d); IWeightTensor attn = g.MulBatch(Qs, Ks, m_multiHeadNum * batchSize, scale); IWeightTensor attn2 = g.View(attn, m_multiHeadNum * batchSize * seqLen, seqLen); IWeightTensor softmax = g.Softmax(attn2, inPlace: true); IWeightTensor softmax2 = g.View(softmax, m_multiHeadNum * batchSize, seqLen, seqLen); IWeightTensor o = g.View(g.MulBatch(softmax2, Vs, m_multiHeadNum * batchSize), m_multiHeadNum, batchSize, seqLen, m_d); IWeightTensor W = g.View(g.Permute(o, 1, 2, 0, 3), batchSize * seqLen, m_multiHeadNum * m_d); // Output projection IWeightTensor finalAttResults = g.Dropout(g.Affine(W, W0, b0), batchSize, m_dropoutRatio, inPlace: true); //Skip connection and layer normaliztion IWeightTensor normAddedAttResult = layerNorm2.AddNorm(finalAttResults, input, g); //Feed forward IWeightTensor ffnResult = feedForwardLayer1.Process(normAddedAttResult, batchSize, g); IWeightTensor reluFFNResult = g.Relu(ffnResult); IWeightTensor ffn2Result = feedForwardLayer2.Process(reluFFNResult, batchSize, g); //Skip connection and layer normaliztion IWeightTensor addFFNResult = graph.Add(ffn2Result, normAddedAttResult); return(addFFNResult); } }
/// <summary> /// Scaled multi-heads attention component with skip connectioned feed forward layers /// </summary> /// <param name="inputQ">The input Q tensor</param> /// <param name="inputK">The input K tensor</param> /// <param name="inputV">The input V tensor</param> /// <param name="batchSize">Batch size of input data set</param> /// <param name="graph">The instance of computing graph</param> /// <returns>Transformered output tensor</returns> public IWeightTensor Perform(IWeightTensor inputQ, IWeightTensor inputK, IWeightTensor inputV, IWeightTensor keyMask, int batchSize, IComputeGraph graph) { if (m_sharedQKV) { throw new ArgumentException($"Layer '{m_name}' is in shared QKV mode, please call antoher Perform function with single input tensor."); } using (IComputeGraph g = graph.CreateSubGraph($"{m_name}_MultiHeadAttention")) { int seqLenQ = inputQ.Rows / batchSize; // SeqLenK must be euqal to SeqLenV int seqLenK = inputK.Rows / batchSize; int seqLenV = inputV.Rows / batchSize; IWeightTensor inputQNorm = layerNormQ.Norm(inputQ, g); //Input projections float scale = 1.0f / (float)(m_inputDim); IWeightTensor allQ = g.View(g.Affine(inputQNorm, Q, Qb, scale), dims: new long[] { batchSize, seqLenQ, m_multiHeadNum, m_d }); IWeightTensor allK = g.View(g.Affine(inputK, K, Kb, scale), dims: new long[] { batchSize, seqLenK, m_multiHeadNum, m_d }); IWeightTensor allV = g.View(g.Affine(inputV, V, Vb, scale), dims: new long[] { batchSize, seqLenV, m_multiHeadNum, m_d }); //Multi-head attentions IWeightTensor Qs = g.View(g.Permute(allQ, 2, 0, 1, 3), dims: new long[] { m_multiHeadNum *batchSize, seqLenQ, m_d }); IWeightTensor Ks = g.View(g.Permute(allK, 2, 0, 3, 1), dims: new long[] { m_multiHeadNum *batchSize, m_d, seqLenK }); IWeightTensor Vs = g.View(g.Permute(allV, 2, 0, 1, 3), dims: new long[] { m_multiHeadNum *batchSize, seqLenV, m_d }); // Scaled softmax scale = 1.0f / (float)(m_d); IWeightTensor attn = g.MulBatch(Qs, Ks, m_multiHeadNum * batchSize, scale); IWeightTensor softmax = g.Softmax(attn, keyMask, inPlace: true); IWeightTensor o = g.View(g.MulBatch(softmax, Vs, m_multiHeadNum * batchSize), dims: new long[] { m_multiHeadNum, batchSize, seqLenQ, m_d }); IWeightTensor W = g.View(g.Permute(o, 1, 2, 0, 3), dims: new long[] { batchSize *seqLenQ, m_multiHeadNum *m_d }); // Output projection IWeightTensor finalAttResults = g.Dropout(g.Affine(W, W0, b0), batchSize, m_dropoutRatio, inPlace: true); return(graph.Add(finalAttResults, inputQ)); } }