private void blockCheck( PaddedBufferedBlockCipher cipher, IBlockCipherPadding padding, KeyParameter key, byte[] data) { byte[] outBytes = new byte[data.Length + 8]; byte[] dec = new byte[data.Length]; try { cipher.Init(true, key); int len = cipher.ProcessBytes(data, 0, data.Length, outBytes, 0); len += cipher.DoFinal(outBytes, len); cipher.Init(false, key); int decLen = cipher.ProcessBytes(outBytes, 0, len, dec, 0); decLen += cipher.DoFinal(dec, decLen); if (!AreEqual(data, dec)) { Fail("failed to decrypt - i = " + data.Length + ", padding = " + padding.PaddingName); } } catch (Exception e) { Fail("Exception - " + e.ToString(), e); } }
/** * Create a buffered block cipher with the desired padding. * * @param cipher the underlying block cipher this buffering object wraps. * @param padding the padding type. */ public PaddedBufferedBlockCipher( IBlockCipher cipher, IBlockCipherPadding padding) { this.cipher = cipher; this.padding = padding; buf = new byte[cipher.GetBlockSize()]; bufOff = 0; }
/** * Create a buffered block cipher with the desired padding. * * @param cipher the underlying block cipher this buffering object wraps. * @param padding the padding type. */ public PaddedBufferedBlockCipher( IBlockCipher cipher, IBlockCipherPadding padding) { this.Cipher = cipher; this.padding = padding; Buffer = new byte[cipher.GetBlockSize()]; BufferOffset = 0; }
/** * create a standard MAC based on a block cipher with the size of the * MAC been given in bits. This class uses CBC mode as the basis for the * MAC generation. * <p> * Note: the size of the MAC must be at least 24 bits (FIPS Publication 81), * or 16 bits if being used as a data authenticator (FIPS Publication 113), * and in general should be less than the size of the block cipher as it reduces * the chance of an exhaustive attack (see Handbook of Applied Cryptography). * </p> * @param cipher the cipher to be used as the basis of the MAC generation. * @param macSizeInBits the size of the MAC in bits, must be a multiple of 8. * @param padding the padding to be used to complete the last block. */ public CbcBlockCipherMac( IBlockCipher cipher, int macSizeInBits, IBlockCipherPadding padding) { if ((macSizeInBits % 8) != 0) throw new ArgumentException("MAC size must be multiple of 8"); this.cipher = new CbcBlockCipher(cipher); this.padding = padding; this.macSize = macSizeInBits / 8; buf = new byte[cipher.GetBlockSize()]; bufOff = 0; }
public void doTestPadding( IBlockCipherPadding padding, SecureRandom rand, byte[] ffVector, byte[] ZeroVector) { PaddedBufferedBlockCipher cipher = new PaddedBufferedBlockCipher(new DesEngine(), padding); KeyParameter key = new KeyParameter(Hex.Decode("0011223344556677")); // // ff test // byte[] data = { (byte)0xff, (byte)0xff, (byte)0xff, (byte)0, (byte)0, (byte)0, (byte)0, (byte)0 }; if (ffVector != null) { padding.AddPadding(data, 3); if (!AreEqual(data, ffVector)) { Fail("failed ff test for " + padding.PaddingName); } } // // zero test // if (ZeroVector != null) { data = new byte[8]; padding.AddPadding(data, 4); if (!AreEqual(data, ZeroVector)) { Fail("failed zero test for " + padding.PaddingName); } } for (int i = 1; i != 200; i++) { data = new byte[i]; rand.NextBytes(data); blockCheck(cipher, padding, key, data); } }
public static IBufferedCipher GetCipher( string algorithm) { if (algorithm == null) { throw new ArgumentNullException("algorithm"); } algorithm = Platform.ToUpperInvariant(algorithm); { string aliased = (string)algorithms[algorithm]; if (aliased != null) { algorithm = aliased; } } IBasicAgreement iesAgreement = null; if (algorithm == "IES") { iesAgreement = new DHBasicAgreement(); } else if (algorithm == "ECIES") { iesAgreement = new ECDHBasicAgreement(); } if (iesAgreement != null) { return(new BufferedIesCipher( new IesEngine( iesAgreement, new Kdf2BytesGenerator( new Sha1Digest()), new HMac( new Sha1Digest())))); } if (algorithm.StartsWith("PBE")) { if (algorithm.EndsWith("-CBC")) { if (algorithm == "PBEWITHSHA1ANDDES-CBC") { return(new PaddedBufferedBlockCipher( new CbcBlockCipher(new DesEngine()))); } else if (algorithm == "PBEWITHSHA1ANDRC2-CBC") { return(new PaddedBufferedBlockCipher( new CbcBlockCipher(new RC2Engine()))); } else if (Strings.IsOneOf(algorithm, "PBEWITHSHAAND2-KEYTRIPLEDES-CBC", "PBEWITHSHAAND3-KEYTRIPLEDES-CBC")) { return(new PaddedBufferedBlockCipher( new CbcBlockCipher(new DesEdeEngine()))); } else if (Strings.IsOneOf(algorithm, "PBEWITHSHAAND128BITRC2-CBC", "PBEWITHSHAAND40BITRC2-CBC")) { return(new PaddedBufferedBlockCipher( new CbcBlockCipher(new RC2Engine()))); } } else if (algorithm.EndsWith("-BC") || algorithm.EndsWith("-OPENSSL")) { if (Strings.IsOneOf(algorithm, "PBEWITHSHAAND128BITAES-CBC-BC", "PBEWITHSHAAND192BITAES-CBC-BC", "PBEWITHSHAAND256BITAES-CBC-BC", "PBEWITHSHA256AND128BITAES-CBC-BC", "PBEWITHSHA256AND192BITAES-CBC-BC", "PBEWITHSHA256AND256BITAES-CBC-BC", "PBEWITHMD5AND128BITAES-CBC-OPENSSL", "PBEWITHMD5AND192BITAES-CBC-OPENSSL", "PBEWITHMD5AND256BITAES-CBC-OPENSSL")) { return(new PaddedBufferedBlockCipher( new CbcBlockCipher(new AesFastEngine()))); } } } string[] parts = algorithm.Split('/'); IBlockCipher blockCipher = null; IAsymmetricBlockCipher asymBlockCipher = null; IStreamCipher streamCipher = null; string algorithmName = parts[0]; { string aliased = (string)algorithms[algorithmName]; if (aliased != null) { algorithmName = aliased; } } CipherAlgorithm cipherAlgorithm; try { cipherAlgorithm = (CipherAlgorithm)Enums.GetEnumValue(typeof(CipherAlgorithm), algorithmName); } catch (ArgumentException) { throw new SecurityUtilityException("Cipher " + algorithm + " not recognised."); } switch (cipherAlgorithm) { case CipherAlgorithm.AES: blockCipher = new AesFastEngine(); break; case CipherAlgorithm.ARC4: streamCipher = new RC4Engine(); break; case CipherAlgorithm.BLOWFISH: blockCipher = new BlowfishEngine(); break; case CipherAlgorithm.CAMELLIA: blockCipher = new CamelliaEngine(); break; case CipherAlgorithm.CAST5: blockCipher = new Cast5Engine(); break; case CipherAlgorithm.CAST6: blockCipher = new Cast6Engine(); break; case CipherAlgorithm.DES: blockCipher = new DesEngine(); break; case CipherAlgorithm.DESEDE: blockCipher = new DesEdeEngine(); break; case CipherAlgorithm.ELGAMAL: asymBlockCipher = new ElGamalEngine(); break; case CipherAlgorithm.GOST28147: blockCipher = new Gost28147Engine(); break; case CipherAlgorithm.HC128: streamCipher = new HC128Engine(); break; case CipherAlgorithm.HC256: streamCipher = new HC256Engine(); break; #if INCLUDE_IDEA case CipherAlgorithm.IDEA: blockCipher = new IdeaEngine(); break; #endif case CipherAlgorithm.NOEKEON: blockCipher = new NoekeonEngine(); break; case CipherAlgorithm.PBEWITHSHAAND128BITRC4: case CipherAlgorithm.PBEWITHSHAAND40BITRC4: streamCipher = new RC4Engine(); break; case CipherAlgorithm.RC2: blockCipher = new RC2Engine(); break; case CipherAlgorithm.RC5: blockCipher = new RC532Engine(); break; case CipherAlgorithm.RC5_64: blockCipher = new RC564Engine(); break; case CipherAlgorithm.RC6: blockCipher = new RC6Engine(); break; case CipherAlgorithm.RIJNDAEL: blockCipher = new RijndaelEngine(); break; case CipherAlgorithm.RSA: asymBlockCipher = new RsaBlindedEngine(); break; case CipherAlgorithm.SALSA20: streamCipher = new Salsa20Engine(); break; case CipherAlgorithm.SEED: blockCipher = new SeedEngine(); break; case CipherAlgorithm.SERPENT: blockCipher = new SerpentEngine(); break; case CipherAlgorithm.SKIPJACK: blockCipher = new SkipjackEngine(); break; case CipherAlgorithm.TEA: blockCipher = new TeaEngine(); break; case CipherAlgorithm.TWOFISH: blockCipher = new TwofishEngine(); break; case CipherAlgorithm.VMPC: streamCipher = new VmpcEngine(); break; case CipherAlgorithm.VMPC_KSA3: streamCipher = new VmpcKsa3Engine(); break; case CipherAlgorithm.XTEA: blockCipher = new XteaEngine(); break; default: throw new SecurityUtilityException("Cipher " + algorithm + " not recognised."); } if (streamCipher != null) { if (parts.Length > 1) { throw new ArgumentException("Modes and paddings not used for stream ciphers"); } return(new BufferedStreamCipher(streamCipher)); } bool cts = false; bool padded = true; IBlockCipherPadding padding = null; IAeadBlockCipher aeadBlockCipher = null; if (parts.Length > 2) { if (streamCipher != null) { throw new ArgumentException("Paddings not used for stream ciphers"); } string paddingName = parts[2]; CipherPadding cipherPadding; if (paddingName == "") { cipherPadding = CipherPadding.RAW; } else if (paddingName == "X9.23PADDING") { cipherPadding = CipherPadding.X923PADDING; } else { try { cipherPadding = (CipherPadding)Enums.GetEnumValue(typeof(CipherPadding), paddingName); } catch (ArgumentException) { throw new SecurityUtilityException("Cipher " + algorithm + " not recognised."); } } switch (cipherPadding) { case CipherPadding.NOPADDING: padded = false; break; case CipherPadding.RAW: break; case CipherPadding.ISO10126PADDING: case CipherPadding.ISO10126D2PADDING: case CipherPadding.ISO10126_2PADDING: padding = new ISO10126d2Padding(); break; case CipherPadding.ISO7816_4PADDING: case CipherPadding.ISO9797_1PADDING: padding = new ISO7816d4Padding(); break; case CipherPadding.ISO9796_1: case CipherPadding.ISO9796_1PADDING: asymBlockCipher = new ISO9796d1Encoding(asymBlockCipher); break; case CipherPadding.OAEP: case CipherPadding.OAEPPADDING: asymBlockCipher = new OaepEncoding(asymBlockCipher); break; case CipherPadding.OAEPWITHMD5ANDMGF1PADDING: asymBlockCipher = new OaepEncoding(asymBlockCipher, new MD5Digest()); break; case CipherPadding.OAEPWITHSHA1ANDMGF1PADDING: case CipherPadding.OAEPWITHSHA_1ANDMGF1PADDING: asymBlockCipher = new OaepEncoding(asymBlockCipher, new Sha1Digest()); break; case CipherPadding.OAEPWITHSHA224ANDMGF1PADDING: case CipherPadding.OAEPWITHSHA_224ANDMGF1PADDING: asymBlockCipher = new OaepEncoding(asymBlockCipher, new Sha224Digest()); break; case CipherPadding.OAEPWITHSHA256ANDMGF1PADDING: case CipherPadding.OAEPWITHSHA_256ANDMGF1PADDING: asymBlockCipher = new OaepEncoding(asymBlockCipher, new Sha256Digest()); break; case CipherPadding.OAEPWITHSHA384ANDMGF1PADDING: case CipherPadding.OAEPWITHSHA_384ANDMGF1PADDING: asymBlockCipher = new OaepEncoding(asymBlockCipher, new Sha384Digest()); break; case CipherPadding.OAEPWITHSHA512ANDMGF1PADDING: case CipherPadding.OAEPWITHSHA_512ANDMGF1PADDING: asymBlockCipher = new OaepEncoding(asymBlockCipher, new Sha512Digest()); break; case CipherPadding.PKCS1: case CipherPadding.PKCS1PADDING: asymBlockCipher = new Pkcs1Encoding(asymBlockCipher); break; case CipherPadding.PKCS5: case CipherPadding.PKCS5PADDING: case CipherPadding.PKCS7: case CipherPadding.PKCS7PADDING: padding = new Pkcs7Padding(); break; case CipherPadding.TBCPADDING: padding = new TbcPadding(); break; case CipherPadding.WITHCTS: cts = true; break; case CipherPadding.X923PADDING: padding = new X923Padding(); break; case CipherPadding.ZEROBYTEPADDING: padding = new ZeroBytePadding(); break; default: throw new SecurityUtilityException("Cipher " + algorithm + " not recognised."); } } string mode = ""; if (parts.Length > 1) { mode = parts[1]; int di = GetDigitIndex(mode); string modeName = di >= 0 ? mode.Substring(0, di) : mode; try { CipherMode cipherMode = modeName == "" ? CipherMode.NONE : (CipherMode)Enums.GetEnumValue(typeof(CipherMode), modeName); switch (cipherMode) { case CipherMode.ECB: case CipherMode.NONE: break; case CipherMode.CBC: blockCipher = new CbcBlockCipher(blockCipher); break; case CipherMode.CCM: aeadBlockCipher = new CcmBlockCipher(blockCipher); break; case CipherMode.CFB: { int bits = (di < 0) ? 8 * blockCipher.GetBlockSize() : int.Parse(mode.Substring(di)); blockCipher = new CfbBlockCipher(blockCipher, bits); break; } case CipherMode.CTR: blockCipher = new SicBlockCipher(blockCipher); break; case CipherMode.CTS: cts = true; blockCipher = new CbcBlockCipher(blockCipher); break; case CipherMode.EAX: aeadBlockCipher = new EaxBlockCipher(blockCipher); break; case CipherMode.GCM: aeadBlockCipher = new GcmBlockCipher(blockCipher); break; case CipherMode.GOFB: blockCipher = new GOfbBlockCipher(blockCipher); break; case CipherMode.OCB: aeadBlockCipher = new OcbBlockCipher(blockCipher, CreateBlockCipher(cipherAlgorithm)); break; case CipherMode.OFB: { int bits = (di < 0) ? 8 * blockCipher.GetBlockSize() : int.Parse(mode.Substring(di)); blockCipher = new OfbBlockCipher(blockCipher, bits); break; } case CipherMode.OPENPGPCFB: blockCipher = new OpenPgpCfbBlockCipher(blockCipher); break; case CipherMode.SIC: if (blockCipher.GetBlockSize() < 16) { throw new ArgumentException("Warning: SIC-Mode can become a twotime-pad if the blocksize of the cipher is too small. Use a cipher with a block size of at least 128 bits (e.g. AES)"); } blockCipher = new SicBlockCipher(blockCipher); break; default: throw new SecurityUtilityException("Cipher " + algorithm + " not recognised."); } } catch (ArgumentException) { throw new SecurityUtilityException("Cipher " + algorithm + " not recognised."); } } if (aeadBlockCipher != null) { if (cts) { throw new SecurityUtilityException("CTS mode not valid for AEAD ciphers."); } if (padded && parts.Length > 2 && parts[2] != "") { throw new SecurityUtilityException("Bad padding specified for AEAD cipher."); } return(new BufferedAeadBlockCipher(aeadBlockCipher)); } if (blockCipher != null) { if (cts) { return(new CtsBlockCipher(blockCipher)); } if (padding != null) { return(new PaddedBufferedBlockCipher(blockCipher, padding)); } if (!padded || blockCipher.IsPartialBlockOkay) { return(new BufferedBlockCipher(blockCipher)); } return(new PaddedBufferedBlockCipher(blockCipher)); } if (asymBlockCipher != null) { return(new BufferedAsymmetricBlockCipher(asymBlockCipher)); } throw new SecurityUtilityException("Cipher " + algorithm + " not recognised."); }
public void SetPadding(IBlockCipherPadding padding) { if (padding != null) _padding = padding; }
public static IBufferedCipher GetCipher( string algorithm) { if (algorithm == null) { throw new ArgumentNullException("algorithm"); } algorithm = algorithm.ToUpper(CultureInfo.InvariantCulture); string aliased = (string)algorithms[algorithm]; if (aliased != null) { algorithm = aliased; } IBasicAgreement iesAgreement = null; if (algorithm == "IES") { iesAgreement = new DHBasicAgreement(); } else if (algorithm == "ECIES") { iesAgreement = new ECDHBasicAgreement(); } if (iesAgreement != null) { return(new BufferedIesCipher( new IesEngine( iesAgreement, new Kdf2BytesGenerator( new Sha1Digest()), new HMac( new Sha1Digest())))); } if (algorithm.StartsWith("PBE")) { switch (algorithm) { case "PBEWITHSHAAND2-KEYTRIPLEDES-CBC": case "PBEWITHSHAAND3-KEYTRIPLEDES-CBC": return(new PaddedBufferedBlockCipher( new CbcBlockCipher(new DesEdeEngine()))); case "PBEWITHSHAAND128BITRC2-CBC": case "PBEWITHSHAAND40BITRC2-CBC": return(new PaddedBufferedBlockCipher( new CbcBlockCipher(new RC2Engine()))); case "PBEWITHSHAAND128BITAES-CBC-BC": case "PBEWITHSHAAND192BITAES-CBC-BC": case "PBEWITHSHAAND256BITAES-CBC-BC": case "PBEWITHSHA256AND128BITAES-CBC-BC": case "PBEWITHSHA256AND192BITAES-CBC-BC": case "PBEWITHSHA256AND256BITAES-CBC-BC": case "PBEWITHMD5AND128BITAES-CBC-OPENSSL": case "PBEWITHMD5AND192BITAES-CBC-OPENSSL": case "PBEWITHMD5AND256BITAES-CBC-OPENSSL": return(new PaddedBufferedBlockCipher( new CbcBlockCipher(new AesFastEngine()))); case "PBEWITHSHA1ANDDES-CBC": return(new PaddedBufferedBlockCipher( new CbcBlockCipher(new DesEngine()))); case "PBEWITHSHA1ANDRC2-CBC": return(new PaddedBufferedBlockCipher( new CbcBlockCipher(new RC2Engine()))); } } string[] parts = algorithm.Split('/'); IBlockCipher blockCipher = null; IAsymmetricBlockCipher asymBlockCipher = null; IStreamCipher streamCipher = null; switch (parts[0]) { case "AES": blockCipher = new AesFastEngine(); break; case "ARC4": streamCipher = new RC4Engine(); break; case "BLOWFISH": blockCipher = new BlowfishEngine(); break; case "CAMELLIA": blockCipher = new CamelliaEngine(); break; case "CAST5": blockCipher = new Cast5Engine(); break; case "CAST6": blockCipher = new Cast6Engine(); break; case "DES": blockCipher = new DesEngine(); break; case "DESEDE": blockCipher = new DesEdeEngine(); break; case "ELGAMAL": asymBlockCipher = new ElGamalEngine(); break; case "GOST28147": blockCipher = new Gost28147Engine(); break; case "HC128": streamCipher = new HC128Engine(); break; case "HC256": streamCipher = new HC256Engine(); break; #if INCLUDE_IDEA case "IDEA": blockCipher = new IdeaEngine(); break; #endif case "NOEKEON": blockCipher = new NoekeonEngine(); break; case "PBEWITHSHAAND128BITRC4": case "PBEWITHSHAAND40BITRC4": streamCipher = new RC4Engine(); break; case "RC2": blockCipher = new RC2Engine(); break; case "RC5": blockCipher = new RC532Engine(); break; case "RC5-64": blockCipher = new RC564Engine(); break; case "RC6": blockCipher = new RC6Engine(); break; case "RIJNDAEL": blockCipher = new RijndaelEngine(); break; case "RSA": asymBlockCipher = new RsaBlindedEngine(); break; case "SALSA20": streamCipher = new Salsa20Engine(); break; case "SEED": blockCipher = new SeedEngine(); break; case "SERPENT": blockCipher = new SerpentEngine(); break; case "SKIPJACK": blockCipher = new SkipjackEngine(); break; case "TEA": blockCipher = new TeaEngine(); break; case "TWOFISH": blockCipher = new TwofishEngine(); break; case "VMPC": streamCipher = new VmpcEngine(); break; case "VMPC-KSA3": streamCipher = new VmpcKsa3Engine(); break; case "XTEA": blockCipher = new XteaEngine(); break; default: throw new SecurityUtilityException("Cipher " + algorithm + " not recognised."); } if (streamCipher != null) { if (parts.Length > 1) { throw new ArgumentException("Modes and paddings not used for stream ciphers"); } return(new BufferedStreamCipher(streamCipher)); } bool cts = false; bool padded = true; IBlockCipherPadding padding = null; IAeadBlockCipher aeadBlockCipher = null; if (parts.Length > 2) { if (streamCipher != null) { throw new ArgumentException("Paddings not used for stream ciphers"); } switch (parts[2]) { case "NOPADDING": padded = false; break; case "": case "RAW": break; case "ISO10126PADDING": case "ISO10126D2PADDING": case "ISO10126-2PADDING": padding = new ISO10126d2Padding(); break; case "ISO7816-4PADDING": case "ISO9797-1PADDING": padding = new ISO7816d4Padding(); break; case "ISO9796-1": case "ISO9796-1PADDING": asymBlockCipher = new ISO9796d1Encoding(asymBlockCipher); break; case "OAEP": case "OAEPPADDING": asymBlockCipher = new OaepEncoding(asymBlockCipher); break; case "OAEPWITHMD5ANDMGF1PADDING": asymBlockCipher = new OaepEncoding(asymBlockCipher, new MD5Digest()); break; case "OAEPWITHSHA1ANDMGF1PADDING": case "OAEPWITHSHA-1ANDMGF1PADDING": asymBlockCipher = new OaepEncoding(asymBlockCipher, new Sha1Digest()); break; case "OAEPWITHSHA224ANDMGF1PADDING": case "OAEPWITHSHA-224ANDMGF1PADDING": asymBlockCipher = new OaepEncoding(asymBlockCipher, new Sha224Digest()); break; case "OAEPWITHSHA256ANDMGF1PADDING": case "OAEPWITHSHA-256ANDMGF1PADDING": asymBlockCipher = new OaepEncoding(asymBlockCipher, new Sha256Digest()); break; case "OAEPWITHSHA384ANDMGF1PADDING": case "OAEPWITHSHA-384ANDMGF1PADDING": asymBlockCipher = new OaepEncoding(asymBlockCipher, new Sha384Digest()); break; case "OAEPWITHSHA512ANDMGF1PADDING": case "OAEPWITHSHA-512ANDMGF1PADDING": asymBlockCipher = new OaepEncoding(asymBlockCipher, new Sha512Digest()); break; case "PKCS1": case "PKCS1PADDING": asymBlockCipher = new Pkcs1Encoding(asymBlockCipher); break; case "PKCS5": case "PKCS5PADDING": case "PKCS7": case "PKCS7PADDING": // NB: Padding defaults to Pkcs7Padding already break; case "TBCPADDING": padding = new TbcPadding(); break; case "WITHCTS": cts = true; break; case "X9.23PADDING": case "X923PADDING": padding = new X923Padding(); break; case "ZEROBYTEPADDING": padding = new ZeroBytePadding(); break; default: throw new SecurityUtilityException("Cipher " + algorithm + " not recognised."); } } string mode = ""; if (parts.Length > 1) { mode = parts[1]; int di = GetDigitIndex(mode); string modeName = di >= 0 ? mode.Substring(0, di) : mode; switch (modeName) { case "": case "ECB": case "NONE": break; case "CBC": blockCipher = new CbcBlockCipher(blockCipher); break; case "CCM": aeadBlockCipher = new CcmBlockCipher(blockCipher); break; case "CFB": { int bits = (di < 0) ? 8 * blockCipher.GetBlockSize() : int.Parse(mode.Substring(di)); blockCipher = new CfbBlockCipher(blockCipher, bits); break; } case "CTR": blockCipher = new SicBlockCipher(blockCipher); break; case "CTS": cts = true; blockCipher = new CbcBlockCipher(blockCipher); break; case "EAX": aeadBlockCipher = new EaxBlockCipher(blockCipher); break; case "GCM": aeadBlockCipher = new GcmBlockCipher(blockCipher); break; case "GOFB": blockCipher = new GOfbBlockCipher(blockCipher); break; case "OFB": { int bits = (di < 0) ? 8 * blockCipher.GetBlockSize() : int.Parse(mode.Substring(di)); blockCipher = new OfbBlockCipher(blockCipher, bits); break; } case "OPENPGPCFB": blockCipher = new OpenPgpCfbBlockCipher(blockCipher); break; case "SIC": if (blockCipher.GetBlockSize() < 16) { throw new ArgumentException("Warning: SIC-Mode can become a twotime-pad if the blocksize of the cipher is too small. Use a cipher with a block size of at least 128 bits (e.g. AES)"); } blockCipher = new SicBlockCipher(blockCipher); break; default: throw new SecurityUtilityException("Cipher " + algorithm + " not recognised."); } } if (aeadBlockCipher != null) { if (cts) { throw new SecurityUtilityException("CTS mode not valid for AEAD ciphers."); } if (padded && parts.Length > 1 && parts[2] != "") { throw new SecurityUtilityException("Bad padding specified for AEAD cipher."); } return(new BufferedAeadBlockCipher(aeadBlockCipher)); } if (blockCipher != null) { if (cts) { return(new CtsBlockCipher(blockCipher)); } if (!padded || blockCipher.IsPartialBlockOkay) { return(new BufferedBlockCipher(blockCipher)); } if (padding != null) { return(new PaddedBufferedBlockCipher(blockCipher, padding)); } return(new PaddedBufferedBlockCipher(blockCipher)); } if (asymBlockCipher != null) { return(new BufferedAsymmetricBlockCipher(asymBlockCipher)); } throw new SecurityUtilityException("Cipher " + algorithm + " not recognised."); }
public CfbBlockCipherMac(IBlockCipher cipher, int cfbBitSize, int macSizeInBits, IBlockCipherPadding padding) { //IL_0010: Unknown result type (might be due to invalid IL or missing references) if (macSizeInBits % 8 != 0) { throw new ArgumentException("MAC size must be multiple of 8"); } mac = new byte[cipher.GetBlockSize()]; this.cipher = new MacCFBBlockCipher(cipher, cfbBitSize); this.padding = padding; macSize = macSizeInBits / 8; Buffer = new byte[this.cipher.GetBlockSize()]; bufOff = 0; }
/** * create a standard MAC based on a CBC block cipher. This will produce an * authentication code half the length of the block size of the cipher. * * @param cipher the cipher to be used as the basis of the MAC generation. * @param padding the padding to be used to complete the last block. */ public CbcBlockCipherMac( IBlockCipher cipher, IBlockCipherPadding padding) : this(cipher, (cipher.GetBlockSize() * 8) / 2, padding) { }
public CfbBlockCipherMac(IBlockCipher cipher, IBlockCipherPadding padding) : this(cipher, 8, cipher.GetBlockSize() * 8 / 2, padding) { }
/** * create a Retail-MAC based on a CBC block cipher. This will produce an * authentication code of the length of the block size of the cipher. * * @param cipher the cipher to be used as the basis of the MAC generation. * @param padding the padding to be used to complete the last block. */ public ISO9797Alg3Mac( IBlockCipher cipher, IBlockCipherPadding padding) : this(cipher, cipher.GetBlockSize() * 8, padding) { }
/// <summary> /// Set the padding for BC Engine /// </summary> /// <param name="padding"></param> public void SetPadding(IBlockCipherPadding padding) => _padding = padding;
private static void DecryptThread(IBufferedCipher cipher, byte[] input, BlockingCollection <string> producerConsumerCollection, bool allPaddings = false) { var taskOutputs = new StringBuilder(); int lineCount = 0; IBlockCipherPadding[] paddings; if (allPaddings) { paddings = new IBlockCipherPadding[] { new ZeroBytePadding(), new ISO10126d2Padding(), new ISO7816d4Padding(), new Pkcs7Padding(), new TbcPadding(), new X923Padding(), new X923Padding(), }; } else { paddings = new IBlockCipherPadding[] { new Pkcs7Padding() }; } while (!producerConsumerCollection.IsCompleted) { string line; try { line = producerConsumerCollection.Take(); } catch (InvalidOperationException) { if (producerConsumerCollection.IsCompleted) { break; } throw; } // Use that line as the key. byte[] key = Encoding.ASCII.GetBytes(line); // For each possible padding... foreach (IBlockCipherPadding padding in paddings) { // Decrypt byte[] output; try { cipher.Init(false, new KeyParameter(key)); output = cipher.DoFinal(input); cipher.Reset(); } catch (InvalidCipherTextException) { // TODO: Possibly filder out those inputs before and/or tell the user not to generate them. continue; } // Convert to hexadecimal. foreach (byte b in output) { taskOutputs.Append(HexStringTable[b]); } taskOutputs.AppendFormat(" `{0}` [{1}]", line, padding.PaddingName); taskOutputs.AppendLine(); ++lineCount; } // Output the hashed values in a batch. if (taskOutputs.Length > 100000) { Console.Write(taskOutputs.ToString()); taskOutputs.Clear(); lineCount = 0; } } // Output the last hashed values. Console.Write(taskOutputs.ToString()); }
private static void DecryptThread(IBufferedCipher cipher, byte[] input, BlockingCollection<string> producerConsumerCollection, bool allPaddings = false) { var taskOutputs = new StringBuilder(); int lineCount = 0; IBlockCipherPadding[] paddings; if (allPaddings) { paddings = new IBlockCipherPadding[] { new ZeroBytePadding(), new ISO10126d2Padding(), new ISO7816d4Padding(), new Pkcs7Padding(), new TbcPadding(), new X923Padding(), new X923Padding(), }; } else { paddings = new IBlockCipherPadding[] {new Pkcs7Padding()}; } while (!producerConsumerCollection.IsCompleted) { string line; try { line = producerConsumerCollection.Take(); } catch (InvalidOperationException) { if (producerConsumerCollection.IsCompleted) break; throw; } // Use that line as the key. byte[] key = Encoding.ASCII.GetBytes(line); // For each possible padding... foreach (IBlockCipherPadding padding in paddings) { // Decrypt byte[] output; try { cipher.Init(false, new KeyParameter(key)); output = cipher.DoFinal(input); cipher.Reset(); } catch (InvalidCipherTextException) { // TODO: Possibly filder out those inputs before and/or tell the user not to generate them. continue; } // Convert to hexadecimal. foreach (byte b in output) { taskOutputs.Append(HexStringTable[b]); } taskOutputs.AppendFormat(" `{0}` [{1}]", line, padding.PaddingName); taskOutputs.AppendLine(); ++lineCount; } // Output the hashed values in a batch. if (taskOutputs.Length > 100000) { Console.Write(taskOutputs.ToString()); taskOutputs.Clear(); lineCount = 0; } } // Output the last hashed values. Console.Write(taskOutputs.ToString()); }
public CfbBlockCipherMac(IBlockCipher cipher, int cfbBitSize, int macSizeInBits, IBlockCipherPadding padding) { if (macSizeInBits % 8 != 0) { throw new ArgumentException("MAC size must be multiple of 8"); } this.mac = new byte[cipher.GetBlockSize()]; this.cipher = new MacCFBBlockCipher(cipher, cfbBitSize); this.padding = padding; this.macSize = macSizeInBits / 8; this.Buffer = new byte[this.cipher.GetBlockSize()]; this.bufOff = 0; }
/** * create a standard MAC based on a block cipher with the size of the * MAC been given in bits. This class uses single DES CBC mode as the basis for the * MAC generation. The final block is decrypted and then encrypted using the * middle and right part of the key. * <p> * Note: the size of the MAC must be at least 24 bits (FIPS Publication 81), * or 16 bits if being used as a data authenticator (FIPS Publication 113), * and in general should be less than the size of the block cipher as it reduces * the chance of an exhaustive attack (see Handbook of Applied Cryptography). * </p> * @param cipher the cipher to be used as the basis of the MAC generation. * @param macSizeInBits the size of the MAC in bits, must be a multiple of 8. * @param padding the padding to be used to complete the last block. */ public ISO9797Alg3Mac( IBlockCipher cipher, int macSizeInBits, IBlockCipherPadding padding) { if ((macSizeInBits % 8) != 0) throw new ArgumentException("MAC size must be multiple of 8"); if (!(cipher is DesEngine)) throw new ArgumentException("cipher must be instance of DesEngine"); this.cipher = new CbcBlockCipher(cipher); this.padding = padding; this.macSize = macSizeInBits / 8; mac = new byte[cipher.GetBlockSize()]; buf = new byte[cipher.GetBlockSize()]; bufOff = 0; }
public Encryptor(Encoding encoding, byte[] key, byte[] macKey, IBlockCipherPadding padding) { this.encoding = encoding; this.key = key; this.Init(key, macKey, padding); }
public ISO9797Alg3Mac(IBlockCipher cipher, IBlockCipherPadding padding) : this(cipher, cipher.GetBlockSize() * 8, padding) { }
/** * create a standard MAC based on a block cipher with the size of the * MAC been given in bits. This class uses CFB mode as the basis for the * MAC generation. * <p> * Note: the size of the MAC must be at least 24 bits (FIPS Publication 81), * or 16 bits if being used as a data authenticator (FIPS Publication 113), * and in general should be less than the size of the block cipher as it reduces * the chance of an exhaustive attack (see Handbook of Applied Cryptography). * </p> * @param cipher the cipher to be used as the basis of the MAC generation. * @param cfbBitSize the size of an output block produced by the CFB mode. * @param macSizeInBits the size of the MAC in bits, must be a multiple of 8. * @param padding a padding to be used. */ public CfbBlockCipherMac( IBlockCipher cipher, int cfbBitSize, int macSizeInBits, IBlockCipherPadding padding) { if ((macSizeInBits % 8) != 0) throw new ArgumentException("MAC size must be multiple of 8"); mac = new byte[cipher.GetBlockSize()]; this.cipher = new MacCFBBlockCipher(cipher, cfbBitSize); this.padding = padding; this.macSize = macSizeInBits / 8; Buffer = new byte[this.cipher.GetBlockSize()]; bufOff = 0; }
public MainWindow() { InitializeComponent(); transactionTypeCollection.Add("CREDIT_CARD"); transactionTypeCollection.Add("DEBIT_CARD"); transactionTypeCollection.Add("ACH"); transactionTypeCollection.Add("INTERAC"); creditEntryModeCollection.Add("EMV"); creditEntryModeCollection.Add("HID"); creditEntryModeCollection.Add("KEYED"); debitEntryModeCollection.Add("EMV"); debitEntryModeCollection.Add("HID"); achEntryModeCollection.Add("KEYED"); creditChargeTypeCollection.Add("SALE"); creditChargeTypeCollection.Add("CREDIT"); creditChargeTypeCollection.Add("VOID"); creditChargeTypeCollection.Add("FORCE_SALE"); creditChargeTypeCollection.Add("AUTH"); creditChargeTypeCollection.Add("CAPTURE"); creditChargeTypeCollection.Add("ADJUSTMENT"); creditChargeTypeCollection.Add("SIGNATURE"); debitChargeTypeCollection.Add("PURCHASE"); debitChargeTypeCollection.Add("REFUND"); achChargeTypeCollection.Add("DEBIT"); achChargeTypeCollection.Add("CREDIT"); accountTypeCollection.Add("DEFAULT"); accountTypeCollection.Add("CASH_BENEFIT"); accountTypeCollection.Add("FOOD_STAMP"); creditTypeCollection.Add("INDEPENDENT"); creditTypeCollection.Add("DEPENDENT"); tccCollection.Add("PPD"); tccCollection.Add("CCD"); tccCollection.Add("WEB"); tccCollection.Add("TEL"); this.transactionTypeCombo.ItemsSource = transactionTypeCollection; _encoding = Encoding.ASCII; Pkcs7Padding pkcs = new Pkcs7Padding(); _padding = pkcs; var settingsPath = System.IO.Path.Combine(AppDomain.CurrentDomain.BaseDirectory, "settings.dat").ToString(); //string data = File.ReadAllText(settingsPath); string decryptedData = AESDecryption(File.ReadAllText(settingsPath), VariableHandler.CryptoKey, true); var parts = decryptedData.Split(','); VariableHandler.AccountToken = parts[0]; customParamText.Text = parts[1]; accountTokenText.Text = VariableHandler.AccountToken; }
public static IBufferedCipher GetCipher(string algorithm) { //IL_0008: Unknown result type (might be due to invalid IL or missing references) //IL_0469: Unknown result type (might be due to invalid IL or missing references) //IL_0495: Unknown result type (might be due to invalid IL or missing references) //IL_07f1: Unknown result type (might be due to invalid IL or missing references) if (algorithm == null) { throw new ArgumentNullException("algorithm"); } algorithm = Platform.ToUpperInvariant(algorithm); string text = (string)algorithms.get_Item((object)algorithm); if (text != null) { algorithm = text; } IBasicAgreement basicAgreement = null; if (algorithm == "IES") { basicAgreement = new DHBasicAgreement(); } else if (algorithm == "ECIES") { basicAgreement = new ECDHBasicAgreement(); } if (basicAgreement != null) { return(new BufferedIesCipher(new IesEngine(basicAgreement, new Kdf2BytesGenerator(new Sha1Digest()), new HMac(new Sha1Digest())))); } if (Platform.StartsWith(algorithm, "PBE")) { if (Platform.EndsWith(algorithm, "-CBC")) { if (algorithm == "PBEWITHSHA1ANDDES-CBC") { return(new PaddedBufferedBlockCipher(new CbcBlockCipher(new DesEngine()))); } if (algorithm == "PBEWITHSHA1ANDRC2-CBC") { return(new PaddedBufferedBlockCipher(new CbcBlockCipher(new RC2Engine()))); } if (Strings.IsOneOf(algorithm, "PBEWITHSHAAND2-KEYTRIPLEDES-CBC", "PBEWITHSHAAND3-KEYTRIPLEDES-CBC")) { return(new PaddedBufferedBlockCipher(new CbcBlockCipher(new DesEdeEngine()))); } if (Strings.IsOneOf(algorithm, "PBEWITHSHAAND128BITRC2-CBC", "PBEWITHSHAAND40BITRC2-CBC")) { return(new PaddedBufferedBlockCipher(new CbcBlockCipher(new RC2Engine()))); } } else if ((Platform.EndsWith(algorithm, "-BC") || Platform.EndsWith(algorithm, "-OPENSSL")) && Strings.IsOneOf(algorithm, "PBEWITHSHAAND128BITAES-CBC-BC", "PBEWITHSHAAND192BITAES-CBC-BC", "PBEWITHSHAAND256BITAES-CBC-BC", "PBEWITHSHA256AND128BITAES-CBC-BC", "PBEWITHSHA256AND192BITAES-CBC-BC", "PBEWITHSHA256AND256BITAES-CBC-BC", "PBEWITHMD5AND128BITAES-CBC-OPENSSL", "PBEWITHMD5AND192BITAES-CBC-OPENSSL", "PBEWITHMD5AND256BITAES-CBC-OPENSSL")) { return(new PaddedBufferedBlockCipher(new CbcBlockCipher(new AesFastEngine()))); } } string[] array = algorithm.Split(new char[1] { '/' }); IBlockCipher blockCipher = null; IAsymmetricBlockCipher asymmetricBlockCipher = null; IStreamCipher streamCipher = null; string text2 = array[0]; string text3 = (string)algorithms.get_Item((object)text2); if (text3 != null) { text2 = text3; } CipherAlgorithm cipherAlgorithm; try { cipherAlgorithm = (CipherAlgorithm)Enums.GetEnumValue(typeof(CipherAlgorithm), text2); } catch (ArgumentException) { throw new SecurityUtilityException("Cipher " + algorithm + " not recognised."); } switch (cipherAlgorithm) { case CipherAlgorithm.AES: blockCipher = new AesFastEngine(); break; case CipherAlgorithm.ARC4: streamCipher = new RC4Engine(); break; case CipherAlgorithm.BLOWFISH: blockCipher = new BlowfishEngine(); break; case CipherAlgorithm.CAMELLIA: blockCipher = new CamelliaEngine(); break; case CipherAlgorithm.CAST5: blockCipher = new Cast5Engine(); break; case CipherAlgorithm.CAST6: blockCipher = new Cast6Engine(); break; case CipherAlgorithm.DES: blockCipher = new DesEngine(); break; case CipherAlgorithm.DESEDE: blockCipher = new DesEdeEngine(); break; case CipherAlgorithm.ELGAMAL: asymmetricBlockCipher = new ElGamalEngine(); break; case CipherAlgorithm.GOST28147: blockCipher = new Gost28147Engine(); break; case CipherAlgorithm.HC128: streamCipher = new HC128Engine(); break; case CipherAlgorithm.HC256: streamCipher = new HC256Engine(); break; case CipherAlgorithm.IDEA: blockCipher = new IdeaEngine(); break; case CipherAlgorithm.NOEKEON: blockCipher = new NoekeonEngine(); break; case CipherAlgorithm.PBEWITHSHAAND128BITRC4: case CipherAlgorithm.PBEWITHSHAAND40BITRC4: streamCipher = new RC4Engine(); break; case CipherAlgorithm.RC2: blockCipher = new RC2Engine(); break; case CipherAlgorithm.RC5: blockCipher = new RC532Engine(); break; case CipherAlgorithm.RC5_64: blockCipher = new RC564Engine(); break; case CipherAlgorithm.RC6: blockCipher = new RC6Engine(); break; case CipherAlgorithm.RIJNDAEL: blockCipher = new RijndaelEngine(); break; case CipherAlgorithm.RSA: asymmetricBlockCipher = new RsaBlindedEngine(); break; case CipherAlgorithm.SALSA20: streamCipher = new Salsa20Engine(); break; case CipherAlgorithm.SEED: blockCipher = new SeedEngine(); break; case CipherAlgorithm.SERPENT: blockCipher = new SerpentEngine(); break; case CipherAlgorithm.SKIPJACK: blockCipher = new SkipjackEngine(); break; case CipherAlgorithm.TEA: blockCipher = new TeaEngine(); break; case CipherAlgorithm.THREEFISH_256: blockCipher = new ThreefishEngine(256); break; case CipherAlgorithm.THREEFISH_512: blockCipher = new ThreefishEngine(512); break; case CipherAlgorithm.THREEFISH_1024: blockCipher = new ThreefishEngine(1024); break; case CipherAlgorithm.TNEPRES: blockCipher = new TnepresEngine(); break; case CipherAlgorithm.TWOFISH: blockCipher = new TwofishEngine(); break; case CipherAlgorithm.VMPC: streamCipher = new VmpcEngine(); break; case CipherAlgorithm.VMPC_KSA3: streamCipher = new VmpcKsa3Engine(); break; case CipherAlgorithm.XTEA: blockCipher = new XteaEngine(); break; default: throw new SecurityUtilityException("Cipher " + algorithm + " not recognised."); } if (streamCipher != null) { if (array.Length > 1) { throw new ArgumentException("Modes and paddings not used for stream ciphers"); } return(new BufferedStreamCipher(streamCipher)); } bool flag = false; bool flag2 = true; IBlockCipherPadding blockCipherPadding = null; IAeadBlockCipher aeadBlockCipher = null; if (array.Length > 2) { if (streamCipher != null) { throw new ArgumentException("Paddings not used for stream ciphers"); } string text4 = array[2]; CipherPadding cipherPadding; if (text4 == "") { cipherPadding = CipherPadding.RAW; } else if (text4 == "X9.23PADDING") { cipherPadding = CipherPadding.X923PADDING; } else { try { cipherPadding = (CipherPadding)Enums.GetEnumValue(typeof(CipherPadding), text4); } catch (ArgumentException) { throw new SecurityUtilityException("Cipher " + algorithm + " not recognised."); } } switch (cipherPadding) { case CipherPadding.NOPADDING: flag2 = false; break; case CipherPadding.ISO10126PADDING: case CipherPadding.ISO10126D2PADDING: case CipherPadding.ISO10126_2PADDING: blockCipherPadding = new ISO10126d2Padding(); break; case CipherPadding.ISO7816_4PADDING: case CipherPadding.ISO9797_1PADDING: blockCipherPadding = new ISO7816d4Padding(); break; case CipherPadding.ISO9796_1: case CipherPadding.ISO9796_1PADDING: asymmetricBlockCipher = new ISO9796d1Encoding(asymmetricBlockCipher); break; case CipherPadding.OAEP: case CipherPadding.OAEPPADDING: asymmetricBlockCipher = new OaepEncoding(asymmetricBlockCipher); break; case CipherPadding.OAEPWITHMD5ANDMGF1PADDING: asymmetricBlockCipher = new OaepEncoding(asymmetricBlockCipher, new MD5Digest()); break; case CipherPadding.OAEPWITHSHA1ANDMGF1PADDING: case CipherPadding.OAEPWITHSHA_1ANDMGF1PADDING: asymmetricBlockCipher = new OaepEncoding(asymmetricBlockCipher, new Sha1Digest()); break; case CipherPadding.OAEPWITHSHA224ANDMGF1PADDING: case CipherPadding.OAEPWITHSHA_224ANDMGF1PADDING: asymmetricBlockCipher = new OaepEncoding(asymmetricBlockCipher, new Sha224Digest()); break; case CipherPadding.OAEPWITHSHA256ANDMGF1PADDING: case CipherPadding.OAEPWITHSHA_256ANDMGF1PADDING: asymmetricBlockCipher = new OaepEncoding(asymmetricBlockCipher, new Sha256Digest()); break; case CipherPadding.OAEPWITHSHA384ANDMGF1PADDING: case CipherPadding.OAEPWITHSHA_384ANDMGF1PADDING: asymmetricBlockCipher = new OaepEncoding(asymmetricBlockCipher, new Sha384Digest()); break; case CipherPadding.OAEPWITHSHA512ANDMGF1PADDING: case CipherPadding.OAEPWITHSHA_512ANDMGF1PADDING: asymmetricBlockCipher = new OaepEncoding(asymmetricBlockCipher, new Sha512Digest()); break; case CipherPadding.PKCS1: case CipherPadding.PKCS1PADDING: asymmetricBlockCipher = new Pkcs1Encoding(asymmetricBlockCipher); break; case CipherPadding.PKCS5: case CipherPadding.PKCS5PADDING: case CipherPadding.PKCS7: case CipherPadding.PKCS7PADDING: blockCipherPadding = new Pkcs7Padding(); break; case CipherPadding.TBCPADDING: blockCipherPadding = new TbcPadding(); break; case CipherPadding.WITHCTS: flag = true; break; case CipherPadding.X923PADDING: blockCipherPadding = new X923Padding(); break; case CipherPadding.ZEROBYTEPADDING: blockCipherPadding = new ZeroBytePadding(); break; default: throw new SecurityUtilityException("Cipher " + algorithm + " not recognised."); case CipherPadding.RAW: break; } } string text5 = ""; if (array.Length > 1) { text5 = array[1]; int digitIndex = GetDigitIndex(text5); string text6 = ((digitIndex >= 0) ? text5.Substring(0, digitIndex) : text5); try { switch ((text6 == "") ? CipherMode.NONE : ((CipherMode)Enums.GetEnumValue(typeof(CipherMode), text6))) { case CipherMode.CBC: blockCipher = new CbcBlockCipher(blockCipher); break; case CipherMode.CCM: aeadBlockCipher = new CcmBlockCipher(blockCipher); break; case CipherMode.CFB: { int bitBlockSize = ((digitIndex < 0) ? (8 * blockCipher.GetBlockSize()) : int.Parse(text5.Substring(digitIndex))); blockCipher = new CfbBlockCipher(blockCipher, bitBlockSize); break; } case CipherMode.CTR: blockCipher = new SicBlockCipher(blockCipher); break; case CipherMode.CTS: flag = true; blockCipher = new CbcBlockCipher(blockCipher); break; case CipherMode.EAX: aeadBlockCipher = new EaxBlockCipher(blockCipher); break; case CipherMode.GCM: aeadBlockCipher = new GcmBlockCipher(blockCipher); break; case CipherMode.GOFB: blockCipher = new GOfbBlockCipher(blockCipher); break; case CipherMode.OCB: aeadBlockCipher = new OcbBlockCipher(blockCipher, CreateBlockCipher(cipherAlgorithm)); break; case CipherMode.OFB: { int blockSize = ((digitIndex < 0) ? (8 * blockCipher.GetBlockSize()) : int.Parse(text5.Substring(digitIndex))); blockCipher = new OfbBlockCipher(blockCipher, blockSize); break; } case CipherMode.OPENPGPCFB: blockCipher = new OpenPgpCfbBlockCipher(blockCipher); break; case CipherMode.SIC: if (blockCipher.GetBlockSize() < 16) { throw new ArgumentException("Warning: SIC-Mode can become a twotime-pad if the blocksize of the cipher is too small. Use a cipher with a block size of at least 128 bits (e.g. AES)"); } blockCipher = new SicBlockCipher(blockCipher); break; default: throw new SecurityUtilityException("Cipher " + algorithm + " not recognised."); case CipherMode.ECB: case CipherMode.NONE: break; } } catch (ArgumentException) { throw new SecurityUtilityException("Cipher " + algorithm + " not recognised."); } } if (aeadBlockCipher != null) { if (flag) { throw new SecurityUtilityException("CTS mode not valid for AEAD ciphers."); } if (flag2 && array.Length > 2 && array[2] != "") { throw new SecurityUtilityException("Bad padding specified for AEAD cipher."); } return(new BufferedAeadBlockCipher(aeadBlockCipher)); } if (blockCipher != null) { if (flag) { return(new CtsBlockCipher(blockCipher)); } if (blockCipherPadding != null) { return(new PaddedBufferedBlockCipher(blockCipher, blockCipherPadding)); } if (!flag2 || blockCipher.IsPartialBlockOkay) { return(new BufferedBlockCipher(blockCipher)); } return(new PaddedBufferedBlockCipher(blockCipher)); } if (asymmetricBlockCipher != null) { return(new BufferedAsymmetricBlockCipher(asymmetricBlockCipher)); } throw new SecurityUtilityException("Cipher " + algorithm + " not recognised."); }