コード例 #1
0
ファイル: Axon.cs プロジェクト: levshits/NeuralNetwork
 public AxonGene GetGenes()
 {
     return(new AxonGene
     {
         ActivationFunction = _activationFunction.GetType(),
         Weights = _terminals.Select(d => d.Weight).ToList()
     });
 }
コード例 #2
0
        private String MakeActivationFunctionString(IActivationFunction act)
        {
            StringBuilder result = new StringBuilder();

            result.Append(act.GetType().Name);

            for (int i = 0; i < act.Params.Length; i++)
            {
                result.Append('|');
                result.Append(CSVFormat.EgFormat.Format(act.Params[i],
                                                        EncogFramework.DefaultPrecision));
            }
            return(result.ToString());
        }
コード例 #3
0
        private void updateGraph()
        {
            Type functionType = cbActivationFunction.SelectedItem as Type;

            if (functionType != null && (function == null || functionType != function.GetType()))
            {
                this.function = (IActivationFunction)Activator.CreateInstance(functionType);
                this.propertyGrid.SelectedObject     = function;
                this.activationFunctionView.Function = function;
                this.activationFunctionView.Domain   = new DoubleRange(-1.0, 1.0);
                this.activationFunctionView.Steps    = 50;
                this.activationFunctionView.Plot();
            }
        }
コード例 #4
0
        public void Plot()
        {
            if (this.function == null)
            {
                throw new InvalidOperationException();
            }

            zedGraphControl.GraphPane.CurveList.Clear();

            double x, y;
            double stepSize = plotDomain.Length / plotSteps;


            PointPairList list = new PointPairList();

            for (int i = 0; i < plotSteps; i++)
            {
                x = this.plotDomain.Min + ((double)i * stepSize);
                switch (this.derivative)
                {
                case FunctionDerivative.None:
                    y = this.function.Function(x); break;

                case FunctionDerivative.First:
                    y = this.function.Derivative(x); break;

                case FunctionDerivative.Second:
                    y = this.function.Derivative2(x); break;

                default:
                    goto case FunctionDerivative.None;
                }

                list.Add(x, y);
            }


            LineItem curve = zedGraphControl.GraphPane.
                             AddCurve(function.GetType().Name, list, Color.Red, SymbolType.None);

            //curve.Line.IsSmooth = true;
            //curve.Line.SmoothTension = 0.1f;
            curve.Line.IsAntiAlias = true;
            curve.Line.Width       = 2f;


            zedGraphControl.AxisChange();
            zedGraphControl.Invalidate();
        }
コード例 #5
0
        /// <summary>
        /// Write a property as an activation function.
        /// </summary>
        ///
        /// <param name="name">The name of the property.</param>
        /// <param name="act">The activation function.</param>
        public void WriteProperty(String name,
                                  IActivationFunction act)
        {
            var result = new StringBuilder();

            result.Append(act.GetType().Name);

            for (int i = 0; i < act.Params.Length; i++)
            {
                result.Append('|');
                result.Append(CSVFormat.EgFormat.Format(act.Params[i],
                                                        EncogFramework.DefaultPrecision));
            }
            WriteProperty(name, result.ToString());
        }
コード例 #6
0
 /// <summary>
 /// Save the activation function.
 /// </summary>
 /// <param name="activationFunction">The activation function.</param>
 /// <param name="xmlOut">The XML.</param>
 public static void SaveActivationFunction(
     IActivationFunction activationFunction, WriteXML xmlOut)
 {
     if (activationFunction != null)
     {
         xmlOut.BeginTag(BasicLayerPersistor.TAG_ACTIVATION);
         xmlOut.BeginTag(activationFunction.GetType().Name);
         String[] names = activationFunction.ParamNames;
         for (int i = 0; i < names.Length; i++)
         {
             String str = names[i];
             double d   = activationFunction.Params[i];
             xmlOut.AddAttribute(str, "" + CSVFormat.EG_FORMAT.Format(d, 10));
         }
         xmlOut.EndTag();
         xmlOut.EndTag();
     }
 }
コード例 #7
0
        private String ToSingleLineArray(
            IActivationFunction[] activationFunctions)
        {
            var result = new StringBuilder();

            result.Append('[');
            for (int i = 0; i < activationFunctions.Length; i++)
            {
                if (i > 0)
                {
                    result.Append(',');
                }

                IActivationFunction af = activationFunctions[i];
                if (af is ActivationSigmoid)
                {
                    result.Append("ENCOG.ActivationSigmoid.create()");
                }
                else if (af is ActivationTANH)
                {
                    result.Append("ENCOG.ActivationTANH.create()");
                }
                else if (af is ActivationLinear)
                {
                    result.Append("ENCOG.ActivationLinear.create()");
                }
                else if (af is ActivationElliott)
                {
                    result.Append("ENCOG.ActivationElliott.create()");
                }
                else if (af is ActivationElliott)
                {
                    result.Append("ENCOG.ActivationElliott.create()");
                }
                else
                {
                    throw new AnalystCodeGenerationError(
                              "Unsupported activatoin function for code generation: "
                              + af.GetType().Name);
                }
            }
            result.Append(']');
            return(result.ToString());
        }
コード例 #8
0
        //Methods
        private void TestActivation(IActivationFunction af, int simLength, double constCurrent, int from, int count)
        {
            for (int i = 1; i <= simLength; i++)
            {
                double signal;
                double input;
                if (i >= from && i < from + count)
                {
                    input = double.IsNaN(constCurrent) ? _rand.NextDouble() : constCurrent;
                }
                else
                {
                    input = 0d;
                }
                signal = af.Compute(input);
                Console.WriteLine($"{af.GetType().Name} step {i}, State {(af.TypeOfActivation == ActivationType.Spiking ? af.InternalState : signal)} signal {signal}");
            }
            Console.ReadLine();

            return;
        }
コード例 #9
0
        public override List <string> DescribeSelf()
        {
            List <String> output = new List <string>();

            var pair = states.FirstOrDefault();

            output.Add("Classification using neural network [" + pair.Value.machine.GetType().Name + "] with " + pair.Value.machine.Layers.Count() + " layers.");
            output.Add("Supervised learning [" + teacherRef.GetType().Name + "] with LearningRate = " + setup.neuralnetwork.learningRate + " and Momentum = " + setup.neuralnetwork.momentum + ".");
            output.Add("Learning in max. iterations [" + setup.neuralnetwork.learningIterationsMax + "], terminated earlier if error rate is lower then [" + setup.neuralnetwork.errorLowerLimit.ToString("F5") + "]");

            //  output.Add("Input layer [0] -> [" + pair.Value.data.NumberOfInputs + "]");
            for (int i = 0; i < pair.Value.machine.Layers.Length; i++)
            {
                Layer l = pair.Value.machine.Layers[i];
                output.Add("Layer [" + (i) + "] -> In[" + l.InputsCount + "] -> Neurons[" + l.Neurons.Length + "] -> Out[" + l.Output.Length + "]");
            }
            output.Add("Output layer [" + (pair.Value.machine.Layers.Length) + "] -> [" + pair.Value.data.NumberOfClasses + "]");
            output.Add("Neuron function [" + activationFunction.GetType().Name + "]. Trained with [" + pair.Value.data.NumberOfCases + "] cases.");


            return(output);
        }
コード例 #10
0
 /// <summary>
 /// Save the activation function.
 /// </summary>
 /// <param name="activationFunction">The activation function.</param>
 /// <param name="xmlOut">The XML.</param>
 public static void SaveActivationFunction(
     IActivationFunction activationFunction, WriteXML xmlOut)
 {
     if (activationFunction != null)
     {
         xmlOut.BeginTag(BasicLayerPersistor.TAG_ACTIVATION);
         xmlOut.BeginTag(activationFunction.GetType().Name);
         String[] names = activationFunction.ParamNames;
         for (int i = 0; i < names.Length; i++)
         {
             String str = names[i];
             double d = activationFunction.Params[i];
             xmlOut.AddAttribute(str, "" + CSVFormat.EG_FORMAT.Format(d, 10));
         }
         xmlOut.EndTag();
         xmlOut.EndTag();
     }
 }
コード例 #11
0
        private String MakeActivationFunctionString(IActivationFunction act)
        {
            StringBuilder result = new StringBuilder();
            result.Append(act.GetType().Name);

            for (int i = 0; i < act.Params.Length; i++)
            {
                result.Append('|');
                result.Append(CSVFormat.EgFormat.Format(act.Params[i],
                        EncogFramework.DefaultPrecision));
            }
            return result.ToString();
        }
コード例 #12
0
        /// <summary>
        /// Write a property as an activation function.
        /// </summary>
        ///
        /// <param name="name">The name of the property.</param>
        /// <param name="act">The activation function.</param>
        public void WriteProperty(String name,
            IActivationFunction act)
        {
            var result = new StringBuilder();
            result.Append(act.GetType().Name);

            for (int i = 0; i < act.Params.Length; i++)
            {
                result.Append('|');
                result.Append(CSVFormat.EgFormat.Format(act.Params[i],
                                                         EncogFramework.DefaultPrecision));
            }
            WriteProperty(name, result.ToString());
        }
コード例 #13
0
        private void CanItLearnRulesWith(IList<IMLDataPair> inputData, IList<IMLDataPair> verfData, int hiddenLayerCount, int neuronCount, IActivationFunction actFunc, double learnRate, double momentum, int batchSize, int maxEpochs)
        {
            var model = new DbModel();
            var funcName = actFunc.GetType().Name;
            var tdCount = inputData.Count();
            if (model.TicTacToeResult.Any(r => r.HiddenLayerCount == hiddenLayerCount &&
                r.NeuronPerLayercount == neuronCount &&
                r.ActivationFunction == funcName &&
                r.LearningRate == learnRate &&
                r.BatchSize == batchSize &&
                r.Momentum == momentum &&
                r.Name == Name &&
                r.Epochs == maxEpochs &&
                r.TrainingDataCount == tdCount))
                return;

            var nn = CreateNetwork(inputData, hiddenLayerCount, neuronCount, actFunc);
            var train = new Backpropagation(nn, new BasicMLDataSet(inputData), learnRate, momentum);
            train.BatchSize = batchSize;
            int epoch = 1;
            do
            {
                train.Iteration();
                epoch++;
            } while (epoch < maxEpochs);

            int good = verfData.Count(verf => { var output = nn.Compute(verf.Input); return Enumerable.Range(0, 9).All(i => Math.Round(output[i]) == Math.Round(verf.Ideal[i])); });
            int bad = VerfDataCount - good;

            var result = new TicTacToeResult()
            {
                HiddenLayerCount = hiddenLayerCount,
                NeuronPerLayercount = neuronCount,
                ActivationFunction = funcName,
                Bad = bad,
                Good = good,
                TrainingDataCount = tdCount,
                Momentum = momentum,
                LearningRate = learnRate,
                BatchSize = batchSize,
                Epochs = epoch,
                Error = train.Error,
                Name = Name,
            };

            model.TicTacToeResult.Add(result);
            model.SaveChanges();
        }
コード例 #14
0
ファイル: EncogWriteHelper.cs プロジェクト: neismit/emds
 public void WriteProperty(string name, IActivationFunction act)
 {
     StringBuilder builder = new StringBuilder();
     builder.Append(act.GetType().Name);
     int index = 0;
     goto Label_0030;
     Label_0011:
     builder.Append(CSVFormat.EgFormat.Format(act.Params[index], 10));
     index++;
     Label_0030:
     if (index < act.Params.Length)
     {
         builder.Append('|');
         goto Label_0011;
     }
     if ((((uint) index) | 3) == 0)
     {
         goto Label_0011;
     }
     this.WriteProperty(name, builder.ToString());
 }
コード例 #15
0
ファイル: layer.cs プロジェクト: abarabone/snn
        public LayerUnit(int length, IActivationFunction actfunc)
        {
            var q = from i in Enumerable.Range(0, length)
                    select new NeuronUnit
            {
                sign       = 1.0f,
                activation = 0.0f,
                bias       = UnityEngine.Random.value,
                af         = actfunc != null ? (IActivationFunction)Activator.CreateInstance(actfunc.GetType()) : null
            }
            ;

            this.neurons = q.ToArray();
        }
コード例 #16
0
ファイル: StateMachineDesigner.cs プロジェクト: thild/NET
        //Methods
        /// <summary>
        /// Builds name of the specified activation function
        /// </summary>
        /// <param name="activationCfg">Activation function configuration</param>
        private string GetActivationName(RCNetBaseSettings activationCfg)
        {
            IActivationFunction aFn = ActivationFactory.Create(activationCfg, _rand);

            return(aFn.TypeOfActivation.ToString() + "-" + aFn.GetType().Name.Replace("Settings", string.Empty));
        }