public override void Execute() { var grid = GridImporter.ImportGrid(sourceEpsgCode, rutenettType, dataFile); GridImporter.BulkStore(grid); Log.i("DB", $"Imported {grid.Cells.Count} cells from {dataFile}."); }
private static void ImportGrid(string shapeFilePath, int sourceEpsgCode, RutenettType rutenettType) { string fullPath = FileLocator.FindFileInTree(Path.Combine(@"Data\Grid\SSB", shapeFilePath)); var grid = GridImporter.ImportGrid(sourceEpsgCode, rutenettType, fullPath); GridImporter.BulkStore(grid); }
/// <summary> /// Imports the grid stored at the given location into /// <paramref name="database"/>. /// </summary> /// <param name="database"> /// The database where the grid should be stored /// </param> /// <param name="fileName"> /// The path to the grid file /// </param> /// <param name="test"> /// If set to true, a <see cref="GridData"/> object is created in order to do more extensive testing on the imported grid. /// </param> /// <returns> /// The newly imported grid /// </returns> public static IGridInfo ImportGrid(this IDatabaseInfo database, string fileName, bool test = true) { GridCommons grid = GridImporter.Import(fileName); if (test) { new GridData(grid); } database.Controller.SaveGridInfo(grid); return(grid); }
/// <summary> /// See also <see cref="GRID_CASE"/> and <see cref="GRID_FILE"/>. /// </summary> protected override GridCommons CreateOrLoadGrid() { GridCommons grd; switch (GRID_CASE) { case 1: grd = Grid1D.LineGrid(GenericBlas.Linspace(-4, 4, 5)); break; case 2: { grd = Grid1D.LineGrid(GenericBlas.Linspace(-4, 4, 20)); break; } case 3: { double[] xnodes = new double[] { -2, 0, 2 }; double[] ynodes = new double[] { -2, 0, 2 }; double dx = xnodes[1] - xnodes[0]; double dy = ynodes[1] - ynodes[0]; //this.CellVolume = dx * dy; //if(Math.Abs(dx - dy) <= 1.0e-12) // EdgeArea = dx; grd = Grid2D.Cartesian2DGrid(xnodes, ynodes, periodicX: false, periodicY: false, type: CellType.Square_4); break; } case 4: { double[] xnodes = GenericBlas.Linspace(-1, 5, 9); double[] ynodes = GenericBlas.Linspace(-1, 5, 13); double dx = xnodes[1] - xnodes[0]; double dy = ynodes[1] - ynodes[0]; this.CellVolume = dx * dy; if (Math.Abs(dx - dy) <= 1.0e-12) { EdgeArea = dx; } grd = Grid2D.Cartesian2DGrid(xnodes, ynodes, periodicX: false, periodicY: false, type: CellType.Square_4); break; } case 5: { double[] xnodes = GenericBlas.Linspace(-1, 1, 8); double[] ynodes = GenericBlas.Linspace(-1, 1, 13); grd = Grid2D.UnstructuredTriangleGrid(xnodes, ynodes, JitterScale: 0.5); break; } case 6: { grd = Circle(); break; } case 7: { // test periodicity grd = Grid2D.CurvedSquareGrid(GenericBlas.Linspace(1, 2, 4), GenericBlas.Linspace(0, 0.25, 10), CellType.Square_9, PeriodicS: true); AltRefSol = true; break; } case 8: { double[] rNodes = GenericBlas.Linspace(1, 4, 8); double[] sNodes = GenericBlas.Linspace(0, 0.5, 15); grd = Grid2D.CurvedSquareGrid(rNodes, sNodes, CellType.Square_4, PeriodicS: false); break; } case 9: { double[] xNodes1 = GenericBlas.Linspace(-1, 0.3, 7); double[] yNodes1 = GenericBlas.Linspace(-1, 1, 13); double[] xNodes2 = GenericBlas.Linspace(0.3, 1, 5); double[] yNodes2 = GenericBlas.Linspace(-1, 1, 25); double[] xNodes3 = GenericBlas.Linspace(-1, 1, 8); double[] yNodes3 = GenericBlas.Linspace(-2, -1, 5); var grd1 = Grid2D.Cartesian2DGrid(xNodes1, yNodes1, type: CellType.Square_Linear); var grd2 = Grid2D.Cartesian2DGrid(xNodes2, yNodes2, type: CellType.Square_Linear); var grd3 = Grid2D.Cartesian2DGrid(xNodes3, yNodes3, type: CellType.Square_Linear); var grdJ = GridCommons.MergeLogically(grd1, GridCommons.MergeLogically(grd2, grd3)); grd = GridCommons.Seal(grdJ, 4); break; } case 10: { double[] xNodes1 = GenericBlas.Linspace(-1, 0.3, 4); double[] xNodes2 = GenericBlas.Linspace(0.3, 1, 5); double[] yNodes1 = GenericBlas.Linspace(-1, 1, 9); double[] yNodes2 = GenericBlas.Linspace(-1, 1, 5); double[] zNodes1 = GenericBlas.Linspace(-1, 1, 5); double[] zNodes2 = GenericBlas.Linspace(-1, 1, 3); var grd1 = Grid3D.Cartesian3DGrid(xNodes1, yNodes1, zNodes1); var grd2 = Grid3D.Cartesian3DGrid(xNodes2, yNodes2, zNodes2); var grdJ = GridCommons.MergeLogically(grd1, grd2); grd = GridCommons.Seal(grdJ, 4); break; } case 11: { grd = Grid2D.Trapezoidal2dGrid(4, 2, 2, GenericBlas.Linspace(0, 1, 2)); break; } case 12: { var grid1 = Grid2D.Cartesian2DGrid(GenericBlas.Linspace(-3, 5, 5), GenericBlas.Linspace(-1, 1, 2)); //grd = base_grid; //grid1.Plot2DGrid(); var gdat1 = new GridData(grid1); var grid2 = gdat1.Adapt(new int[] { 1, 2 }, null, out GridCorrelation o2c_1); //grid2.Plot2DGrid(); var gdat2 = new GridData(grid2); var grid3 = gdat2.Adapt(new int[] { 2, 4 }, null, out GridCorrelation o2c_2); //grid3.Plot2DGrid(); var gdat3 = new GridData(grid3); var grid4 = gdat3.Adapt(new int[] { 11, 14, 15 }, null, out GridCorrelation o2c_3); //grid4.Plot2DGrid(); var gdat4 = new GridData(grid4); var grid5 = gdat4.Adapt(new[] { 4, 21, 22, 10 }, new[] { new[] { 13, 14, 15, 16 } }, out GridCorrelation o2c_4); //grid5.Plot2DGrid(); grd = grid5; break; } case 13: { double[] rNodes = GenericBlas.Linspace(1, 4, 8); double[] sNodes = GenericBlas.Linspace(0, 0.5, 15); grd = Grid2D.CurvedSquareGrid(rNodes, sNodes, CellType.Square_9, PeriodicS: false); break; } case 14: { double[] rNodes = GenericBlas.Linspace(1, 4, 13); double[] sNodes = GenericBlas.Linspace(0, 0.5, 25); grd = Grid2D.CurvedSquareGrid(rNodes, sNodes, CellType.Square_16, PeriodicS: false); break; } case 15: { double[] rNodes = GenericBlas.Linspace(1, 2, 4); double[] sNodes = GenericBlas.Linspace(0, 0.5, 4); double[] zNodes = GenericBlas.Linspace(-1, 1, 5); grd = Grid3D.CylinderGrid(rNodes, sNodes, zNodes, CellType.Cube_27, PeriodicS: false, PeriodicZ: false); break; } case 16: { grd = Grid2D.Ogrid(0.5, 1, 5, 3, CellType.Square_4); break; } case 17: { grd = Grid3D.Ogrid(0.5, 1, 3, 3, GenericBlas.Linspace(0, 4, 3)); break; } case 18: { // aggregation grid double[] xNodes = GenericBlas.Linspace(-1, 1, 5); double[] yNodes = GenericBlas.Linspace(-1, 1, 5); var baseGrid = Grid2D.UnstructuredTriangleGrid(xNodes, yNodes); var baseGdat = new GridData(baseGrid); var aggGrid = CoarseningAlgorithms.Coarsen(baseGdat, 2); base.AggGrid = aggGrid; grd = null; double dx = xNodes[1] - xNodes[0]; double dy = yNodes[1] - yNodes[0]; this.CellVolume = dx * dy; if (Math.Abs(dx - dy) <= 1.0e-12) { EdgeArea = dx; } break; } // ++++++++++++++++++++++++++++++++++++++++++++++++++++ // more expensive grids (not tested in DEBUG MODE) // ++++++++++++++++++++++++++++++++++++++++++++++++++++ case 30: { double[] xnodes = GenericBlas.Linspace(-1, 1, 7); double[] ynodes = GenericBlas.Linspace(-1, 1, 9); double[] znodes = GenericBlas.Linspace(-1, 1, 8); grd = Grid3D.Cartesian3DGrid(xnodes, ynodes, znodes, periodicX: false, periodicY: false, periodicZ: false); break; } // +++++++++++++++++++++++++++++++++ // grids imported from GMSH/CGNS // +++++++++++++++++++++++++++++++++ case 50: { // gmsh grid import test Console.WriteLine("Loading file: '" + GRID_FILE + "'..."); grd = GridImporter.Import(GRID_FILE); //Console.WriteLine("done. " + grd.NoOfUpdateCells.MPISum() + " cells loaded."); //Plot2dGridGnuplot(grd); HashSet <CellType> cellTypes = new HashSet <CellType>(); foreach (var cell in grd.Cells) { if (!cellTypes.Contains(cell.Type)) { cellTypes.Add(cell.Type); } } Console.Write("Cell types: "); foreach (var ct in cellTypes) { Console.Write(ct); Console.Write(" "); } Console.WriteLine(); break; } default: throw new NotSupportedException(); } return(grd); }
//__________________________________________________________________________________________________________________ // Confined cylinder in a channel flow static public RheologyControl ConfinedCylinder(string path = @"\\dc1\userspace\kikker\cluster\cluster_db\ConfinedCylinder", int degree = 3) { RheologyControl C = new RheologyControl(); //Path für cluster //\\dc1\userspace\kikker\cluster\cluster_db\ConfinedCylinder //Path für lokale DB //C:\AnnesBoSSSdb\ConfinedCylinder //Solver Options C.NoOfTimesteps = 1; C.savetodb = true; C.DbPath = path; C.ProjectName = "Cylinder"; C.MaxIter = 100; C.MinIter = 1; C.ConvCrit = 1E-6; //C.UnderRelax = 1.0; C.dt = 1E20; C.dtMax = C.dt; C.dtMin = C.dt; C.Timestepper_Scheme = RheologyControl.TimesteppingScheme.ImplicitEuler; C.NonlinearMethod = NonlinearSolverMethod.Newton; C.ObjectiveParam = 1.0; C.UsePerssonSensor = true; C.SensorLimit = 1e-4; C.AdaptiveMeshRefinement = false; C.RefinementLevel = 10; C.UseArtificialDiffusion = true; C.Bodyforces = true; //Debugging and Solver Analysis C.OperatorMatrixAnalysis = false; C.SkipSolveAndEvaluateResidual = false; C.SetInitialConditions = true; C.SetInitialPressure = false; C.SetParamsAnalyticalSol = false; C.ComputeL2Error = false; //Physical Params double u0 = 1.5; // 0.375;// 0.66;// 3 / 2; double h = 4; C.Stokes = false; C.FixedStreamwisePeriodicBC = false; C.beta = 0.59; C.Reynolds = 1; C.Weissenberg = 0.1; //aim Weissenberg number! C.RaiseWeissenberg = true; C.WeissenbergIncrement = 0.1; //Penalties C.ViscousPenaltyScaling = 1; C.Penalty2 = 1; C.Penalty1[0] = 0.0; C.Penalty1[1] = 0.0; C.PresPenalty2 = 1; C.PresPenalty1[0] = 0.0; C.PresPenalty1[1] = 0.0; C.alpha = 1; C.StressPenalty = 1.0; //Exact Solution Confined Cylinder // Set Initial Conditions / Boundary Conditions Func <double[], double, double> VelocityXfunction = (X, t) => u0 * (1 - (X[1] * X[1]) / h); Func <double[], double, double> VelocityYfunction = (X, t) => 0.0; Func <double[], double, double> Pressurefunction = (X, t) => u0 * 0.5 * C.Reynolds * (35 - X[0]); //since C.Weissenberg is the aim Weissenberg, StressXX must be zero -> would be wrong for first Newtonian shot! Func <double[], double, double> StressXXfunction = (X, t) => 2 * C.Weissenberg * (1 - C.beta) * u0 * (-2 / h) * X[1] * u0 * (-2 / h) * X[1]; Func <double[], double, double> StressXYfunction = (X, t) => (1 - C.beta) * u0 * (-2 / h) * X[1]; Func <double[], double, double> StressYYfunction = (X, t) => (0.0); // Insert Exact Solution C.ExSol_Velocity = new Func <double[], double, double>[] { VelocityXfunction, VelocityYfunction }; C.ExSol_Pressure = Pressurefunction; C.ExSol_Stress = new Func <double[], double, double>[] { StressXXfunction, StressXYfunction, StressYYfunction }; // Create Fields //int degree = 2; C.FieldOptions.Add("VelocityX", new FieldOpts() { Degree = degree, SaveToDB = FieldOpts.SaveToDBOpt.TRUE }); C.FieldOptions.Add("VelocityY", new FieldOpts() { Degree = degree, SaveToDB = FieldOpts.SaveToDBOpt.TRUE }); C.FieldOptions.Add("Pressure", new FieldOpts() { Degree = degree - 1, SaveToDB = FieldOpts.SaveToDBOpt.TRUE }); C.FieldOptions.Add("StressXX", new FieldOpts() { Degree = degree, SaveToDB = FieldOpts.SaveToDBOpt.TRUE }); C.FieldOptions.Add("StressXY", new FieldOpts() { Degree = degree, SaveToDB = FieldOpts.SaveToDBOpt.TRUE }); C.FieldOptions.Add("StressYY", new FieldOpts() { Degree = degree, SaveToDB = FieldOpts.SaveToDBOpt.TRUE }); C.FieldOptions.Add("ResidualMomentumX", new FieldOpts() { Degree = degree, SaveToDB = FieldOpts.SaveToDBOpt.TRUE }); C.FieldOptions.Add("ResidualMomentumY", new FieldOpts() { Degree = degree, SaveToDB = FieldOpts.SaveToDBOpt.TRUE }); C.FieldOptions.Add("ResidualConti", new FieldOpts() { Degree = degree - 1, SaveToDB = FieldOpts.SaveToDBOpt.TRUE }); C.FieldOptions.Add("ResidualStressXX", new FieldOpts() { Degree = degree, SaveToDB = FieldOpts.SaveToDBOpt.TRUE }); C.FieldOptions.Add("ResidualStressXY", new FieldOpts() { Degree = degree, SaveToDB = FieldOpts.SaveToDBOpt.TRUE }); C.FieldOptions.Add("ResidualStressYY", new FieldOpts() { Degree = degree, SaveToDB = FieldOpts.SaveToDBOpt.TRUE }); C.FieldOptions.Add("PhiDG", new FieldOpts() { Degree = 1, SaveToDB = FieldOpts.SaveToDBOpt.TRUE }); C.FieldOptions.Add("Phi", new FieldOpts() { Degree = 1, SaveToDB = FieldOpts.SaveToDBOpt.TRUE }); // Create Grid //fine grid - only on cluster! //string grid = "70797022-eba0-4c77-b179-334c665044b5"; //more refined in wake of cylinder - only on cluster! //string grid = "3637610b-bcdf-4cdd-a647-cd7f91e373e8"; //coarser grid - works without cluster! string grid = "f9aa12dc-53bb-4e2c-81b3-ffccc251a3f7"; //very coarse grid as starting point for refinement //string grid = "e296a1b2-98f9-4fdf-8a32-04e0954ff369"; //Dennis Zylinder for drag validation //string grid = "a67192f5-6b59-4caf-a95a-0a08730c3365"; Guid gridGuid; if (Guid.TryParse(grid, out gridGuid)) { C.GridGuid = gridGuid; } else { C.GridFunc = delegate() { GridCommons _grid; _grid = GridImporter.Import(grid); return(_grid); }; } // Analytical Sol for Params if (C.SetParamsAnalyticalSol == true) { C.VelFunctionU = X => VelocityXfunction(X, 0); C.VelFunctionV = X => VelocityYfunction(X, 0); C.PresFunction = X => Pressurefunction(X, 0); } //restart //var database = new DatabaseInfo(path); //Guid restartID = new Guid("b919f595-9304-4d3c-a5f3-55d3cf4a9749"); //C.RestartInfo = new Tuple<Guid, Foundation.IO.TimestepNumber>(restartID, null); //Set Initial Conditions if (C.SetInitialConditions == true) { C.InitialValues_Evaluators.Add("VelocityX", X => VelocityXfunction(X, 0)); C.InitialValues_Evaluators.Add("VelocityY", X => VelocityYfunction(X, 0)); C.InitialValues_Evaluators.Add("StressXX", X => 0);// StressXXfunction(X, 0)); C.InitialValues_Evaluators.Add("StressXY", X => StressXYfunction(X, 0)); C.InitialValues_Evaluators.Add("StressYY", X => StressYYfunction(X, 0)); if (C.SetInitialPressure == true || C.SkipSolveAndEvaluateResidual == true) { C.InitialValues_Evaluators.Add("Pressure", X => Pressurefunction(X, 0)); } } C.InitialValues_Evaluators.Add("Phi", X => - 1); // Set Boundary Conditions C.AddBoundaryValue("Wall_bottom", "VelocityX", X => 0); C.AddBoundaryValue("Wall_top", "VelocityX", X => 0); C.AddBoundaryValue("Wall_bottom", "VelocityY", X => 0); C.AddBoundaryValue("Wall_top", "VelocityY", X => 0); C.AddBoundaryValue("Wall_cylinder", "VelocityX", X => 0); C.AddBoundaryValue("Wall_cylinder", "VelocityY", X => 0); if (!C.FixedStreamwisePeriodicBC) { C.AddBoundaryValue("Velocity_inlet", "VelocityX", VelocityXfunction); C.AddBoundaryValue("Velocity_inlet", "VelocityY", VelocityYfunction); C.AddBoundaryValue("Velocity_inlet", "StressXX", StressXXfunction); C.AddBoundaryValue("Velocity_inlet", "StressXY", StressXYfunction); C.AddBoundaryValue("Velocity_inlet", "StressYY", StressYYfunction); //C.AddBoundaryCondition("Velocity_inlet", "Pressure", Pressurefunction); C.AddBoundaryValue("Pressure_Outlet"); } return(C); }
//__________________________________________________________________________________________________________________ /// <summary> /// Confined cylinder in a channel flow /// </summary> static public RheologyControl ConfinedCylinder(string path = @"\\dc1\userspace\kikker\cluster\cluster_db\ConfinedCylinder_Drag", int degree = 2) { RheologyControl C = new RheologyControl(); //Path für cluster //\\dc1\userspace\kikker\cluster\cluster_db\ConfinedCylinder //Path für lokale DB //C:\AnnesBoSSSdb\ConfinedCylinder //Solver Options C.NoOfTimesteps = 1; C.savetodb = false; C.DbPath = path; C.ProjectName = "Cylinder"; C.NonLinearSolver.MaxSolverIterations = 50; C.NonLinearSolver.MinSolverIterations = 1; C.NonLinearSolver.ConvergenceCriterion = 1E-7; C.LinearSolver.MaxSolverIterations = 50; C.LinearSolver.MinSolverIterations = 1; C.LinearSolver.ConvergenceCriterion = 1E-7; //C.UnderRelax = 1.0; C.dt = 1e6; C.dtMax = C.dt; C.dtMin = C.dt; C.Timestepper_Scheme = RheologyControl.TimesteppingScheme.ImplicitEuler; C.NonLinearSolver.SolverCode = NonLinearSolverCode.Newton; C.LinearSolver.SolverCode = LinearSolverCode.classic_pardiso; C.ObjectiveParam = 1.0; C.useJacobianForOperatorMatrix = true; C.UsePerssonSensor = false; C.SensorLimit = 1e-4; C.AdaptiveMeshRefinement = false; C.RefinementLevel = 10; C.UseArtificialDiffusion = false; C.Bodyforces = true; //Debugging and Solver Analysis C.OperatorMatrixAnalysis = true; C.SkipSolveAndEvaluateResidual = true; C.SetInitialConditions = true; C.SetInitialPressure = false; C.SetParamsAnalyticalSol = false; C.ComputeL2Error = false; //Physical Params double u0 = 1.5; // 0.375;// 0.66;// 3 / 2; double h = 4; C.Stokes = false; C.FixedStreamwisePeriodicBC = false; C.beta = 0.59; C.Reynolds = 1; C.Weissenberg = 0.0; //aim Weissenberg number! C.RaiseWeissenberg = false; C.WeissenbergIncrement = 0.1; //Penalties C.ViscousPenaltyScaling = 1; C.Penalty2 = 1; C.Penalty1[0] = 0.0; C.Penalty1[1] = 0.0; C.PresPenalty2 = 1; C.PresPenalty1[0] = 0.0; C.PresPenalty1[1] = 0.0; C.alpha = 1; C.StressPenalty = 1.0; //Exact Solution Confined Cylinder // Set Initial Conditions / Boundary Conditions Func <double[], double, double> VelocityXfunction = (X, t) => u0 * (1 - (X[1] * X[1]) / h); Func <double[], double, double> VelocityYfunction = (X, t) => 0.0; Func <double[], double, double> Pressurefunction = (X, t) => u0 * 0.5 * C.Reynolds * (35 - X[0]); Func <double[], double, double> StressXXfunction = (X, t) => 2 * C.Weissenberg * (1 - C.beta) * u0 * (-2 / h) * X[1] * u0 * (-2 / h) * X[1]; Func <double[], double, double> StressXYfunction = (X, t) => (1 - C.beta) * u0 * (-2 / h) * X[1]; Func <double[], double, double> StressYYfunction = (X, t) => (0.0); // Insert Exact Solution C.ExSol_Velocity = new Func <double[], double, double>[] { VelocityXfunction, VelocityYfunction }; C.ExSol_Pressure = Pressurefunction; C.ExSol_Stress = new Func <double[], double, double>[] { StressXXfunction, StressXYfunction, StressYYfunction }; // Create Fields //int degree = 2; C.FieldOptions.Add("VelocityX", new FieldOpts() { Degree = degree, SaveToDB = FieldOpts.SaveToDBOpt.TRUE }); C.FieldOptions.Add("VelocityY", new FieldOpts() { Degree = degree, SaveToDB = FieldOpts.SaveToDBOpt.TRUE }); C.FieldOptions.Add("Pressure", new FieldOpts() { Degree = degree - 1, SaveToDB = FieldOpts.SaveToDBOpt.TRUE }); C.FieldOptions.Add("StressXX", new FieldOpts() { Degree = degree, SaveToDB = FieldOpts.SaveToDBOpt.TRUE }); C.FieldOptions.Add("StressXY", new FieldOpts() { Degree = degree, SaveToDB = FieldOpts.SaveToDBOpt.TRUE }); C.FieldOptions.Add("StressYY", new FieldOpts() { Degree = degree, SaveToDB = FieldOpts.SaveToDBOpt.TRUE }); C.FieldOptions.Add("ResidualMomentumX", new FieldOpts() { Degree = degree, SaveToDB = FieldOpts.SaveToDBOpt.TRUE }); C.FieldOptions.Add("ResidualMomentumY", new FieldOpts() { Degree = degree, SaveToDB = FieldOpts.SaveToDBOpt.TRUE }); C.FieldOptions.Add("ResidualConti", new FieldOpts() { Degree = degree - 1, SaveToDB = FieldOpts.SaveToDBOpt.TRUE }); C.FieldOptions.Add("ResidualStressXX", new FieldOpts() { Degree = degree, SaveToDB = FieldOpts.SaveToDBOpt.TRUE }); C.FieldOptions.Add("ResidualStressXY", new FieldOpts() { Degree = degree, SaveToDB = FieldOpts.SaveToDBOpt.TRUE }); C.FieldOptions.Add("ResidualStressYY", new FieldOpts() { Degree = degree, SaveToDB = FieldOpts.SaveToDBOpt.TRUE }); C.FieldOptions.Add("PhiDG", new FieldOpts() { Degree = 1, SaveToDB = FieldOpts.SaveToDBOpt.TRUE }); C.FieldOptions.Add("Phi", new FieldOpts() { Degree = 1, SaveToDB = FieldOpts.SaveToDBOpt.TRUE }); // Create Grid // half channel mesh3 for cond tests string grid = " 962bc97f-0298-4e2f-ac18-06940cb84956"; // half channel mesh0 for cond tests - schneller? //string grid = "55c34774-1769-4f6b-bfc8-cc6c4d74076a"; // full channel mesh0 for cond tests comparison - schneller? //string grid = "ecd6444f-ddfe-46c4-9df5-a1390f9371d7"; //fine grid - only on cluster! //string grid = "70797022-eba0-4c77-b179-334c665044b5"; //more refined in wake of cylinder - only on cluster! //string grid = "3637610b-bcdf-4cdd-a647-cd7f91e373e8"; //coarser grid - works without cluster! //string grid = "f9aa12dc-53bb-4e2c-81b3-ffccc251a3f7"; //very coarse grid as starting point for refinement //string grid = "e296a1b2-98f9-4fdf-8a32-04e0954ff369"; //Dennis Zylinder for drag validation //string grid = "a67192f5-6b59-4caf-a95a-0a08730c3365"; Guid gridGuid; if (Guid.TryParse(grid, out gridGuid)) { C.GridGuid = gridGuid; } else { C.GridFunc = delegate() { GridCommons _grid; _grid = GridImporter.Import(grid); return(_grid); }; } // Analytical Sol for Params if (C.SetParamsAnalyticalSol == true) { C.VelFunctionU = X => VelocityXfunction(X, 0); C.VelFunctionV = X => VelocityYfunction(X, 0); C.PresFunction = X => Pressurefunction(X, 0); } //restart //var database = new DatabaseInfo(path); //Guid restartID = new Guid("9ae08191-ee15-4803-9e3f-566f119c9de4"); //C.RestartInfo = new Tuple<Guid, Foundation.IO.TimestepNumber>(restartID, null); //Set Initial Conditions if (C.SetInitialConditions == true) { C.InitialValues_Evaluators.Add("VelocityX", X => VelocityXfunction(X, 0)); C.InitialValues_Evaluators.Add("VelocityY", X => VelocityYfunction(X, 0)); C.InitialValues_Evaluators.Add("StressXX", X => 0);// StressXXfunction(X, 0)); C.InitialValues_Evaluators.Add("StressXY", X => StressXYfunction(X, 0)); C.InitialValues_Evaluators.Add("StressYY", X => StressYYfunction(X, 0)); if (C.SetInitialPressure == true || C.SkipSolveAndEvaluateResidual == true) { C.InitialValues_Evaluators.Add("Pressure", X => Pressurefunction(X, 0)); } } C.InitialValues_Evaluators.Add("Phi", X => - 1); // Set Boundary Conditions //C.AddBoundaryValue("Wall_bottom", "VelocityX", X => 0); C.AddBoundaryValue("Wall_top", "VelocityX", X => 0); //C.AddBoundaryValue("Wall_bottom", "VelocityY", X => 0); C.AddBoundaryValue("Wall_top", "VelocityY", X => 0); C.AddBoundaryValue("Wall_cylinder", "VelocityX", X => 0); C.AddBoundaryValue("Wall_cylinder", "VelocityY", X => 0); C.AddBoundaryValue("Freeslip"); if (!C.FixedStreamwisePeriodicBC) { C.AddBoundaryValue("Velocity_inlet", "VelocityX", VelocityXfunction); C.AddBoundaryValue("Velocity_inlet", "VelocityY", VelocityYfunction); C.AddBoundaryValue("Velocity_inlet", "StressXX", StressXXfunction); C.AddBoundaryValue("Velocity_inlet", "StressXY", StressXYfunction); C.AddBoundaryValue("Velocity_inlet", "StressYY", StressYYfunction); //C.AddBoundaryCondition("Velocity_inlet", "Pressure", Pressurefunction); C.AddBoundaryValue("Pressure_Outlet"); } return(C); }