public void GitHubUserGetUserIssuesTestSuccess() { // npm const string githubUsername = "******"; var data = new GitHubIssueData(); var repos = data.GetUserIssues(githubUsername); foreach (var githubRepo in repos) { // flexbox, chrome dev, remy sharp Debug.WriteLine("github: " + githubRepo.Title); } Assert.IsNotEmpty(repos); }
private static void PredictIssue() { //Load the saved model into your application ITransformer loadedModel = _mlContext.Model.Load(_modelPath, out var modelInputSchema); //Add a GitHub issue to test the trained model's prediction GitHubIssueData singleIssue = new GitHubIssueData() { Title = "Entity Framework crashes", Description = "When connecting to the database, EF is crashing" }; _predEngine = _mlContext.Model.CreatePredictionEngine <GitHubIssueData, IssuePrediction>(loadedModel); var prediction = _predEngine.Predict(singleIssue); Console.WriteLine($"=============== Single Prediction - Result: {prediction.Area} ==============="); }
/// <summary> /// Returns the model. /// </summary> /// <param name="trainingDataView"></param> /// <param name="pipeline"></param> /// <returns></returns> public static IEstimator <ITransformer> BuildAndTrainModel(IDataView trainingDataView, IEstimator <ITransformer> pipeline) { var trainingPipeline = pipeline.Append(_mlContext.MulticlassClassification.Trainers.SdcaMaximumEntropy("Label", "Features")) .Append(_mlContext.Transforms.Conversion.MapKeyToValue("PredictedLabel")); Console.WriteLine("------transforming the dataset and applying the training.--------"); _trainedModel = trainingPipeline.Fit(trainingDataView);//Fit()method trains your model by transforming the dataset and applying the training. _predEngine = _mlContext.Model.CreatePredictionEngine <GitHubIssueData, IssuePrediction>(_trainedModel); GitHubIssueData issue = new GitHubIssueData() { Title = "WebSockets communication is slow in my machine", Description = "The WebSockets communication used under the covers by SignalR looks like is going slow in my development machine.." }; var prediction = _predEngine.Predict(issue);// Predict() function makes a prediction on a single row of data: Console.WriteLine($"=============== Single Prediction just-trained-model - Result: {prediction.Area} ==============="); return(trainingPipeline); }
public void GitHubUserHaveRepositoryTestSuccess() { var data = new GitHubIssueData(); var repos = data.GetUserRepos(this.userName); Assert.IsNotEmpty(repos); }
private void ButtonUpdate_Click(object sender, RoutedEventArgs e) { var gi = new GitHubIssueData(); var repos = gi.GetUserRepos("kedde"); MessageBox.Show("Update data grid with issues: " + repos.Count); }