/// <include file='FactorDocs.xml' path='factor_docs/message_op_class[@name="GammaPowerProductOp_Laplace"]/message_doc[@name="BAverageConditional(GammaPower, GammaPower, GammaPower, Gamma, GammaPower)"]/*'/> public static GammaPower BAverageConditional([SkipIfUniform] GammaPower product, [Proper] GammaPower A, [Proper] GammaPower B, Gamma q, GammaPower result) { if (B.Shape < A.Shape) { return(AAverageConditional(product, B, A, q, result)); } if (A.IsPointMass) { return(GammaProductOp.BAverageConditional(product, A.Point, result)); } if (B.IsPointMass) { return(GammaPower.Uniform(result.Power)); // TODO } if (product.IsUniform()) { return(product); } if (q.IsUniform()) { q = Q(product, A, B); } double bPoint = q.GetMean(); // derivatives of b double[] bDerivatives = new double[] { bPoint, 1, 0, 0 }; double bMean, bVariance; GaussianOp_Laplace.LaplaceMoments(q, bDerivatives, dlogfs(bPoint, product, A), out bMean, out bVariance); GammaPower bMarginal = GammaPower.FromGamma(Gamma.FromMeanAndVariance(bMean, bVariance), result.Power); result.SetToRatio(bMarginal, B, GammaProductOp_Laplace.ForceProper); return(result); }
/// <include file='FactorDocs.xml' path='factor_docs/message_op_class[@name="GammaPowerProductOp_Laplace"]/message_doc[@name="BAverageConditional(GammaPower, GammaPower, GammaPower, Gamma, GammaPower)"]/*'/> public static GammaPower BAverageConditional([SkipIfUniform] GammaPower product, [Proper] GammaPower A, [Proper] GammaPower B, Gamma q, GammaPower result) { if (B.Shape < A.Shape) { return(AAverageConditional(product, B, A, q, result)); } if (A.IsPointMass) { return(GammaProductOp.BAverageConditional(product, A.Point, result)); } if (B.IsPointMass) { return(GammaPower.Uniform(result.Power)); // TODO } if (product.IsUniform()) { return(product); } if (q.IsUniform()) { q = Q(product, A, B); } double qPoint = q.GetMean(); GammaPower bMarginal; // threshold ensures 6/qPoint^4 does not overflow double threshold = Math.Sqrt(Math.Sqrt(6 / double.MaxValue)); if (result.Power < 0 && qPoint > threshold) { double iqMean, iqVariance; GetIQMoments(product, A, q, qPoint, out iqMean, out iqVariance); GammaPower iqMarginal = GammaPower.FromMeanAndVariance(iqMean, iqVariance, -1); bMarginal = GammaPower.FromShapeAndRate(iqMarginal.Shape, iqMarginal.Rate, result.Power); } else { // B.Shape >= A.Shape therefore Q is the approximate distribution of B^(1/B.Power). // We compute the approximate moments of q = b^(1/b.Power) to get a Gamma distribution and then raise to B.Power. double qMean, qVariance; GetQMoments(product, A, q, qPoint, out qMean, out qVariance); bMarginal = GammaPower.FromGamma(Gamma.FromMeanAndVariance(qMean, qVariance), result.Power); } result.SetToRatio(bMarginal, B, GammaProductOp_Laplace.ForceProper); return(result); }
/// <include file='FactorDocs.xml' path='factor_docs/message_op_class[@name="GammaPowerProductOp_Laplace"]/message_doc[@name="AAverageConditional(GammaPower, GammaPower, GammaPower, Gamma, GammaPower)"]/*'/> public static GammaPower AAverageConditional([SkipIfUniform] GammaPower product, GammaPower A, [SkipIfUniform] GammaPower B, Gamma q, GammaPower result) { if (B.Shape < A.Shape) { return(BAverageConditional(product, B, A, q, result)); } if (B.IsPointMass) { return(GammaProductOp.AAverageConditional(product, B.Point, result)); } if (A.IsPointMass) { return(GammaPower.Uniform(A.Power)); // TODO } if (product.IsUniform()) { return(product); } double qPoint = q.GetMean(); GammaPower aMarginal; if (product.IsPointMass) { // Z = int Ga(y/q; s, r)/q Ga(q; q_s, q_r) dq // E[a] = E[product/q] // E[a^2] = E[product^2/q^2] // aVariance = E[a^2] - aMean^2 double productPoint = product.Point; if (productPoint == 0) { aMarginal = GammaPower.PointMass(0, result.Power); } else { double iqMean, iqVariance; GetIQMoments(product, A, q, qPoint, out iqMean, out iqVariance); double aMean = productPoint * iqMean; double aVariance = productPoint * productPoint * iqVariance; aMarginal = GammaPower.FromGamma(Gamma.FromMeanAndVariance(aMean, aVariance), result.Power); } } else { if (double.IsPositiveInfinity(product.Rate)) { return(GammaPower.PointMass(0, result.Power)); } if (A.Power != product.Power) { throw new NotSupportedException($"A.Power ({A.Power}) != product.Power ({product.Power})"); } if (B.Power != product.Power) { throw new NotSupportedException($"B.Power ({B.Power}) != product.Power ({product.Power})"); } double r = product.Rate; double g = 1 / (qPoint * r + A.Rate); double g2 = g * g; double shape2 = GammaFromShapeAndRateOp_Slow.AddShapesMinus1(product.Shape, A.Shape) + (1 - A.Power); // From above: // a^(y_s-pa + a_s-1) exp(-(y_r b + a_r)*a) if (shape2 > 2) { // Compute the moments of a^(-1/a.Power) // Here q = b^(1/b.Power) // E[a^(-1/a.Power)] = E[(q r + a_r)/(shape2-1)] // var(a^(-1/a.Power)) = E[(q r + a_r)^2/(shape2-1)/(shape2-2)] - E[a^(-1/a.Power)]^2 // = (var(q r + a_r) + E[(q r + a_r)]^2)/(shape2-1)/(shape2-2) - E[(q r + a_r)]^2/(shape2-1)^2 // = var(q r + a_r)/(shape2-1)/(shape2-2) + E[(q r + a_r)/(shape2-1)]^2/(shape2-2) // TODO: share this computation with BAverageConditional double qMean, qVariance; GetQMoments(product, A, q, qPoint, out qMean, out qVariance); double iaMean = (qMean * r + A.Rate) / (shape2 - 1); //double iaVariance = (qVariance * r2 / (shape2 - 1) + iaMean * iaMean) / (shape2 - 2); // shape = mean^2/variance + 2 //double iaVarianceOverMeanSquared = (qVariance / (shape2 - 1) * r / iaMean * r / iaMean + 1) / (shape2 - 2); double iaVarianceOverMeanSquared = (qVariance * (shape2 - 1) / (qMean + A.Rate / r) / (qMean + A.Rate / r) + 1) / (shape2 - 2); //GammaPower iaMarginal = GammaPower.FromMeanAndVariance(iaMean, iaVariance, -1); GammaPower iaMarginal = InverseGammaFromMeanAndVarianceOverMeanSquared(iaMean, iaVarianceOverMeanSquared); if (iaMarginal.IsUniform()) { if (result.Power > 0) { return(GammaPower.PointMass(0, result.Power)); } else { return(GammaPower.Uniform(result.Power)); } } else { aMarginal = GammaPower.FromShapeAndRate(iaMarginal.Shape, iaMarginal.Rate, result.Power); } bool check = false; if (check) { // Importance sampling MeanVarianceAccumulator mvaB = new MeanVarianceAccumulator(); MeanVarianceAccumulator mvaInvA = new MeanVarianceAccumulator(); Gamma bPrior = Gamma.FromShapeAndRate(B.Shape, B.Rate); q = bPrior; double shift = (product.Shape - product.Power) * Math.Log(qPoint) - shape2 * Math.Log(A.Rate + qPoint * r) + bPrior.GetLogProb(qPoint) - q.GetLogProb(qPoint); for (int i = 0; i < 1000000; i++) { double bSample = q.Sample(); // logf = (y_s-y_p)*log(b) - (s+y_s-pa)*log(r + b*y_r) double logf = (product.Shape - product.Power) * Math.Log(bSample) - shape2 * Math.Log(A.Rate + bSample * r) + bPrior.GetLogProb(bSample) - q.GetLogProb(bSample); double weight = Math.Exp(logf - shift); mvaB.Add(bSample, weight); double invA = (bSample * r + A.Rate) / (shape2 - 1); mvaInvA.Add(invA, weight); } Trace.WriteLine($"b = {mvaB}, {qMean}, {qVariance}"); Trace.WriteLine($"invA = {mvaInvA} {mvaInvA.Variance * (shape2 - 1) / (shape2 - 2) + mvaInvA.Mean * mvaInvA.Mean / (shape2 - 2)}, {iaMean}, {iaVarianceOverMeanSquared * iaMean * iaMean}"); Trace.WriteLine($"aMarginal = {aMarginal}"); } } else { // Compute the moments of a^(1/a.Power) // aMean = shape2/(b y_r + a_r) // aVariance = E[shape2*(shape2+1)/(b y_r + a_r)^2] - aMean^2 = var(shape2/(b y_r + a_r)) + E[shape2/(b y_r + a_r)^2] // = shape2^2*var(1/(b y_r + a_r)) + shape2*(var(1/(b y_r + a_r)) + (aMean/shape2)^2) double r2 = r * r; double[] gDerivatives = new double[] { g, -r * g2, 2 * g2 * g * r2, -6 * g2 * g2 * r2 * r }; double gMean, gVariance; GaussianOp_Laplace.LaplaceMoments(q, gDerivatives, dlogfs(qPoint, product, A), out gMean, out gVariance); double aMean = shape2 * gMean; double aVariance = shape2 * shape2 * gVariance + shape2 * (gVariance + gMean * gMean); aMarginal = GammaPower.FromGamma(Gamma.FromMeanAndVariance(aMean, aVariance), result.Power); } } result.SetToRatio(aMarginal, A, GammaProductOp_Laplace.ForceProper); if (double.IsNaN(result.Shape) || double.IsNaN(result.Rate)) { throw new InferRuntimeException("result is nan"); } return(result); }
/// <include file='FactorDocs.xml' path='factor_docs/message_op_class[@name="GammaPowerProductOp_Laplace"]/message_doc[@name="ProductAverageConditional(GammaPower, GammaPower, GammaPower, Gamma, GammaPower)"]/*'/> public static GammaPower ProductAverageConditional(GammaPower product, [Proper] GammaPower A, [SkipIfUniform] GammaPower B, Gamma q, GammaPower result) { if (B.Shape < A.Shape) { return(ProductAverageConditional(product, B, A, q, result)); } if (B.IsPointMass) { return(GammaProductOp.ProductAverageConditional(A, B.Point)); } if (B.IsUniform()) { return(GammaPower.Uniform(result.Power)); } if (A.IsPointMass) { return(GammaProductOp.ProductAverageConditional(A.Point, B)); } if (product.IsPointMass) { return(GammaPower.Uniform(result.Power)); // TODO } if (A.Power != product.Power) { throw new NotSupportedException($"A.Power ({A.Power}) != product.Power ({product.Power})"); } if (B.Power != product.Power) { throw new NotSupportedException($"B.Power ({B.Power}) != product.Power ({product.Power})"); } if (A.Rate == 0) { if (B.Rate == 0) { return(GammaPower.FromShapeAndRate(Math.Min(A.Shape, B.Shape), 0, result.Power)); } else { return(A); } } if (B.Rate == 0) { return(B); } double qPoint = q.GetMean(); double r = product.Rate; double shape2 = GammaFromShapeAndRateOp_Slow.AddShapesMinus1(product.Shape, A.Shape) + (1 - A.Power); GammaPower productMarginal; // threshold ensures 6/qPoint^4 does not overflow double threshold = Math.Sqrt(Math.Sqrt(6 / double.MaxValue)); if (shape2 > 2 && result.Power < 0 && qPoint > threshold) { // Compute the moments of product^(-1/product.Power) // Here q = b^(1/b.Power) // E[a^(-1/a.Power) b^(-1/b.Power)] = E[(q r + a_r)/(shape2-1)/q] // var(a^(-1/a.Power) b^(-1/b.Power)) = E[(q r + a_r)^2/(shape2-1)/(shape2-2)/q^2] - E[a^(-1/a.Power) b^(-1/b.Power)]^2 // = (var((q r + a_r)/q) + E[(q r + a_r)/q]^2)/(shape2-1)/(shape2-2) - E[(q r + a_r)/q]^2/(shape2-1)^2 // = var((q r + a_r)/q)/(shape2-1)/(shape2-2) + E[(q r + a_r)/(shape2-1)/q]^2/(shape2-2) double iqMean, iqVariance; GetIQMoments(product, A, q, qPoint, out iqMean, out iqVariance); double ipMean = (r + A.Rate * iqMean) / (shape2 - 1); double ipVariance = (iqVariance * A.Rate * A.Rate / (shape2 - 1) + ipMean * ipMean) / (shape2 - 2); // TODO: use ipVarianceOverMeanSquared GammaPower ipMarginal = GammaPower.FromMeanAndVariance(ipMean, ipVariance, -1); if (ipMarginal.IsUniform()) { return(GammaPower.Uniform(result.Power)); } else { productMarginal = GammaPower.FromShapeAndRate(ipMarginal.Shape, ipMarginal.Rate, result.Power); } bool check = false; if (check) { // Importance sampling MeanVarianceAccumulator mvaInvQ = new MeanVarianceAccumulator(); MeanVarianceAccumulator mvaInvProduct = new MeanVarianceAccumulator(); Gamma qPrior = Gamma.FromShapeAndRate(B.Shape, B.Rate); double shift = (product.Shape - product.Power) * Math.Log(qPoint) - shape2 * Math.Log(A.Rate + qPoint * r) + qPrior.GetLogProb(qPoint) - q.GetLogProb(qPoint); for (int i = 0; i < 1000000; i++) { double qSample = q.Sample(); // logf = (y_s-y_p)*log(b) - (s+y_s-pa)*log(r + b*y_r) double logf = (product.Shape - product.Power) * Math.Log(qSample) - shape2 * Math.Log(A.Rate + qSample * r) + qPrior.GetLogProb(qSample) - q.GetLogProb(qSample); double weight = Math.Exp(logf - shift); mvaInvQ.Add(1 / qSample, weight); double invProduct = (r + A.Rate / qSample) / (shape2 - 1); mvaInvProduct.Add(invProduct, weight); } Trace.WriteLine($"invQ = {mvaInvQ}, {iqMean}, {iqVariance}"); Trace.WriteLine($"invProduct = {mvaInvProduct}"); Trace.WriteLine($"invA = {mvaInvProduct.Variance * (shape2 - 1) / (shape2 - 2) + mvaInvProduct.Mean * mvaInvProduct.Mean / (shape2 - 2)}, {ipMean}, {ipVariance}"); Trace.WriteLine($"productMarginal = {productMarginal}"); } } else { // Compute the moments of y = product^(1/product.Power) // yMean = E[shape2*b/(b y_r + a_r)] // yVariance = E[shape2*(shape2+1)*b^2/(b y_r + a_r)^2] - yMean^2 // = var(shape2*b/(b y_r + a_r)) + E[shape2*b^2/(b y_r + a_r)^2] // = shape2^2*var(b/(b y_r + a_r)) + shape2*(var(b/(b y_r + a_r)) + (yMean/shape2)^2) // Let g = b/(b y_r + a_r) double denom = qPoint * r + A.Rate; double denom2 = denom * denom; double rOverDenom = r / denom; double[] gDerivatives = (denom == 0) ? new double[] { 0, 0, 0, 0 } : new double[] { qPoint / denom, A.Rate / denom2, -2 * A.Rate / denom2 * rOverDenom, 6 * A.Rate / denom2 * rOverDenom * rOverDenom }; double gMean, gVariance; GaussianOp_Laplace.LaplaceMoments(q, gDerivatives, dlogfs(qPoint, product, A), out gMean, out gVariance); double yMean = shape2 * gMean; double yVariance = shape2 * shape2 * gVariance + shape2 * (gVariance + gMean * gMean); productMarginal = GammaPower.FromGamma(Gamma.FromMeanAndVariance(yMean, yVariance), result.Power); } result.SetToRatio(productMarginal, product, GammaProductOp_Laplace.ForceProper); if (double.IsNaN(result.Shape) || double.IsNaN(result.Rate)) { throw new InferRuntimeException("result is nan"); } return(result); }
public static GammaPower GammaPowerFromDifferentPower(GammaPower message, double newPower) { if (message.Power == newPower) { return(message); // same as below, but faster } if (message.IsUniform()) { return(GammaPower.Uniform(newPower)); } // Making two hops ensures that the desired mean powers are finite. if (message.Power > 0 && newPower < 0 && newPower != -1) { return(GammaPowerFromDifferentPower(GammaPowerFromDifferentPower(message, -1), newPower)); } if (message.Power < 0 && newPower > 0 && newPower != 1) { return(GammaPowerFromDifferentPower(GammaPowerFromDifferentPower(message, 1), newPower)); } // Project the message onto the desired power if (newPower == 1 || newPower == -1 || newPower == 2) { message.GetMeanAndVariance(out double mean, out double variance); if (!double.IsPositiveInfinity(mean)) { return(GammaPower.FromMeanAndVariance(mean, variance, newPower)); } // Fall through } bool useMean = false; if (useMean) { // Constraints: // mean = Gamma(Shape + newPower)/Gamma(Shape)/Rate^newPower =approx (Shape/Rate)^newPower // mean2 = Gamma(Shape + 2*newPower)/Gamma(Shape)/Rate^(2*newPower) =approx ((Shape + newPower)/Rate)^newPower * (Shape/Rate)^newPower // mean2/mean^2 = Gamma(Shape + 2*newPower)*Gamma(Shape)/Gamma(Shape + newPower)^2 =approx ((Shape + newPower)/Shape)^newPower // Shape =approx newPower/((mean2/mean^2)^(1/newPower) - 1) // Rate = Shape/mean^(1/newPower) message.GetMeanAndVariance(out double mean, out double variance); double meanp = System.Math.Pow(mean, 1 / newPower); double mean2p = System.Math.Pow(variance + mean * mean, 1 / newPower); double shape = newPower / (mean2p / meanp / meanp - 1); if (double.IsInfinity(shape)) { return(GammaPower.PointMass(mean, newPower)); } double rate = shape / meanp; return(GammaPower.FromShapeAndRate(shape, rate, newPower)); } else { // Compute the mean and variance of x^1/newPower double mean = message.GetMeanPower(1 / newPower); double mean2 = message.GetMeanPower(2 / newPower); double variance = System.Math.Max(0, mean2 - mean * mean); if (double.IsPositiveInfinity(mean * mean)) { variance = mean; } return(GammaPower.FromGamma(Gamma.FromMeanAndVariance(mean, variance), newPower)); } }
/// <include file='FactorDocs.xml' path='factor_docs/message_op_class[@name="GammaProductOp_Laplace"]/message_doc[@name="AAverageConditional(Gamma, Gamma, Gamma, Gamma)"]/*'/> public static Gamma AAverageConditional([SkipIfUniform] Gamma product, Gamma A, [SkipIfUniform] Gamma B, Gamma q) { return(ToGamma(GammaPowerProductOp_Laplace.AAverageConditional(GammaPower.FromGamma(product, 1), GammaPower.FromGamma(A, 1), GammaPower.FromGamma(B, 1), q, GammaPower.Uniform(1)))); }
/// <include file='FactorDocs.xml' path='factor_docs/message_op_class[@name="GammaProductOp_Laplace"]/message_doc[@name="LogAverageFactor(Gamma, Gamma, Gamma, Gamma)"]/*'/> public static double LogAverageFactor(Gamma product, Gamma A, Gamma B, Gamma q) { return(GammaPowerProductOp_Laplace.LogAverageFactor(GammaPower.FromGamma(product, 1), GammaPower.FromGamma(A, 1), GammaPower.FromGamma(B, 1), q)); }
public static Gamma Q(Gamma product, [Proper] Gamma A, [Proper] Gamma B) { return(GammaPowerProductOp_Laplace.Q(GammaPower.FromGamma(product, 1), GammaPower.FromGamma(A, 1), GammaPower.FromGamma(B, 1))); }
// derivatives of the factor marginalized over Product and A private static double[] dlogfs(double b, Gamma product, Gamma A) { return(GammaPowerProductOp_Laplace.dlogfs(b, GammaPower.FromGamma(product, 1), GammaPower.FromGamma(A, 1))); }