public virtual void Final() { theFuzzySystem.RulesDatabaseSet[0] = Best; baseLine = theFuzzySystem.ErrorLearnSamples(theFuzzySystem.RulesDatabaseSet[0]); // theScouts = null; // theWorkers = null; // theScout = null; // theWorker = null; GC.Collect(); }
public virtual void oneIterate(FS result) { theScouts.Clear(); theWorkers.Clear(); baseLine = result.ErrorLearnSamples(result.RulesDatabaseSet[0]); Best = result.RulesDatabaseSet[0]; theScout = null; theWorker = null; for (int s = 0; s < countScouts; s++) { double goodsLine = -1; int ztryes = 0; while ((goodsLine <= 0) && (ztryes < 100)) { theScout = new Scout(Best, theFuzzySystem); theScout.generateNewRule(typeTerm, rand); goodsLine = theScout.getGoodsImproove(baseLine); } theScouts.Add(theScout); } BeeComparer toBeeSort = new BeeComparer(); theScouts.Sort(toBeeSort); KnowlegeBaseRules ScoutBest = theScouts[theScouts.Count - 1].PositionOfBee; int ScoutBestNumRule = theScouts[theScouts.Count - 1].NumOFRule; for (int w = 0; w < countWorkers; w++) { theWorker = new Worker(ScoutBest, theFuzzySystem); theWorkers.Add(theWorker); theWorkers[theWorkers.Count - 1].WorkerFly(ScoutBestNumRule, rand); theWorkers[theWorkers.Count - 1].getGoodsImproove(baseLine); } theWorkers.Sort(toBeeSort); if (theScouts[theScouts.Count - 1].Goods > theWorkers[theWorkers.Count - 1].Goods) { Best = theScouts[theScouts.Count - 1].PositionOfBee; } else { Best = theWorkers[theWorkers.Count - 1].PositionOfBee; } theFuzzySystem.RulesDatabaseSet[0] = Best; }
public virtual void oneIterate(FS result) { // theScouts.Clear(); // theWorkers.Clear(); baseLine = result.ErrorLearnSamples(result.RulesDatabaseSet[0]); Best = result.RulesDatabaseSet[0]; /* for (int s = 0; s < countScouts; s++) * { * double goodsLine = -1; * int ztryes = 0; * while ((goodsLine <= 0) && (ztryes < 100)) * { * theScout = new Scout(Best, theFuzzySystem); * theScout.generateNewRule(typeTerm, rand); * goodsLine = theScout.getGoodsImproove(baseLine); * ztryes++; * } * theScouts.Add(theScout); * }*/ Parallel.For(0, countScouts, new ParallelOptions { MaxDegreeOfParallelism = countScouts, TaskScheduler = null }, s => // for (int s = 0; s < countScouts; s++) { double goodsLine = -1; int ztryes = 0; while ((goodsLine <= 0) && (ztryes < 100)) { theScouts[s] = new Scout(Best, theFuzzySystem); theScouts[s].generateNewRule(typeTerm, rand.Value); goodsLine = theScouts[s].getGoodsImproove(baseLine); ztryes++; } } ); BeeComparer toBeeSort = new BeeComparer(); Array.Sort(theScouts, toBeeSort); KnowlegeBaseRules ScoutBest = theScouts[countScouts - 1].PositionOfBee; int ScoutBestNumRule = theScouts[countScouts - 1].NumOFRule; /*for (int w = 0; w < countWorkers; w++) * { * theWorker = new Worker(ScoutBest, theFuzzySystem); * theWorkers.Add(theWorker); * theWorkers[theWorkers.Count - 1].WorkerFly( ScoutBestNumRule, rand); * theWorkers[countWorkers*3 - 1].getGoodsImproove(baseLine); * }*/ for (int a = 0; a < 3; a++) { Parallel.For(0, countWorkers, new ParallelOptions { MaxDegreeOfParallelism = countWorkers, TaskScheduler = null }, w => // for (int w = 0; w < countWorkers; w++) { theWorkers[countWorkers * a + w] = new Worker(theScouts[theScouts.Length - 1 - a].PositionOfBee, theFuzzySystem); theWorkers[countWorkers * a + w].WorkerFly(ScoutBestNumRule, rand.Value); theWorkers[countWorkers * a + w].getGoodsImproove(baseLine); } ); } Array.Sort(theWorkers, toBeeSort); if (theScouts[countScouts - 1].Goods > theWorkers[countWorkers * 3 - 1].Goods) { Best = theScouts[countScouts - 1].PositionOfBee; } else { Best = theWorkers[countWorkers * 3 - 1].PositionOfBee; } theFuzzySystem.RulesDatabaseSet[0] = Best; }
public double getGoodsImproove(double baseValue) { goods = baseValue - Parrent.ErrorLearnSamples(thePositionOfBee); return(goods); }