コード例 #1
0
ファイル: WaveletTest.cs プロジェクト: superowner/CommonUtils
        public static void TestHaarInputOutput(string imageInPath)
        {
            var image = ReadImageGrayscale(imageInPath);

            #region Wavelet Compress Methods
            // Test HaarWaveletTransform
            var inputMatrix = new Matrix(image);
            inputMatrix.WriteCSV("haar-before.csv");
            HaarWaveletTransform.HaarTransform2D(image, inputMatrix.Rows, inputMatrix.Columns);

            Matrix haarMatrixInverse = inputMatrix.Copy();
            HaarWaveletTransform.InverseHaarTransform2D(haarMatrixInverse.MatrixData, haarMatrixInverse.Rows, haarMatrixInverse.Columns);
            haarMatrixInverse.WriteCSV("haar-after.csv");
            haarMatrixInverse.DrawMatrixImage("haar-transform-forward-and-backward.png", -1, -1, false);

            // Test Wavelet Compress and Decompress in one step
            const int compLevels   = 8;
            const int compTreshold = 150;

            Matrix haarMatrixCompDecomp = haarMatrixInverse.Copy();
            WaveletComDec.CompressDecompress2D(haarMatrixCompDecomp.MatrixData, compLevels, compTreshold);
            haarMatrixCompDecomp.DrawMatrixImage("haar-compress-and-decompress-combined.png", -1, -1, false);

            // Test Compress and Decompress in two steps
            int    lastHeight     = 0;
            int    lastWidth      = 0;
            Matrix haarMatrixComp = haarMatrixInverse.Copy();
            WaveletCompress.Compress2D(haarMatrixComp.MatrixData, compLevels, compTreshold, out lastHeight, out lastWidth);
            WaveletDecompress.Decompress2D(haarMatrixComp.MatrixData, compLevels, lastHeight, lastWidth);
            haarMatrixComp.DrawMatrixImage("haar-compress-and-decompress.png", -1, -1, false);
            #endregion

            #region Test using HaarCSharp

            // Test HaarCSharp using iterations
            const int haarCSharpIterations = 3;
            Matrix    haarMatrixCSharp     = haarMatrixInverse.Copy();
            ForwardWaveletTransform.Transform2D(haarMatrixCSharp.MatrixData, false, haarCSharpIterations);
            haarMatrixCSharp.DrawMatrixImage("haar-forward.png", -1, -1, false);
            InverseWaveletTransform.Transform2D(haarMatrixCSharp.MatrixData, false, haarCSharpIterations);
            haarMatrixCSharp.DrawMatrixImage("haar-inverse.png", -1, -1, false);

            // Test HaarCSharp using all levels and only 1 iteration
            Matrix haarMatrixCSharpAll = haarMatrixInverse.Copy();
            ForwardWaveletTransform.Transform2D(haarMatrixCSharpAll.MatrixData, true, 1);
            haarMatrixCSharpAll.DrawMatrixImage("haar-forward-all.png", -1, -1, false);
            InverseWaveletTransform.Transform2D(haarMatrixCSharpAll.MatrixData, true, 1);
            haarMatrixCSharpAll.DrawMatrixImage("haar-inverse-all.png", -1, -1, false);
            #endregion
        }
コード例 #2
0
ファイル: WaveletTest.cs プロジェクト: superowner/CommonUtils
        public static void TestHaarCSharp2D()
        {
            Console.WriteLine();
            Console.WriteLine("The HaarCSharp2D");

            double[][] mat = Get2DTestData();
            ForwardWaveletTransform.Transform2D(mat);

            var result = new Matrix(mat);

            result.PrintPretty();
            Assert.That(mat, Is.EqualTo(Get2DResultData()).AsCollection.Within(0.001), "fail at [0]");

            InverseWaveletTransform.Transform2D(mat);
            result.PrintPretty();
            Assert.That(mat, Is.EqualTo(Get2DTestData()).AsCollection.Within(0.001), "fail at [0]");
        }
コード例 #3
0
ファイル: WaveletTest.cs プロジェクト: superowner/CommonUtils
        public static Matrix GetWaveletTransformedMatrix(double[][] image, WaveletMethod waveletMethod)
        {
            int width  = image[0].Length;
            int height = image.Length;

            Matrix dwtMatrix = null;

            Stopwatch stopWatch = Stopwatch.StartNew();
            long      startS    = stopWatch.ElapsedTicks;

            switch (waveletMethod)
            {
            case WaveletMethod.Haar:
                Haar.Haar2D(image, height, width);
                dwtMatrix = new Matrix(image);
                break;

            case WaveletMethod.HaarTransformTensor:                     // This is using the tensor product layout
                dwtMatrix = WaveletUtils.HaarWaveletTransform2D(image);
                break;

            case WaveletMethod.HaarWaveletDecompositionTensor:                     // This is using the tensor product layout
                var haar = new StandardHaarWaveletDecomposition();
                haar.DecomposeImageInPlace(image);
                dwtMatrix = new Matrix(image);
                break;

            case WaveletMethod.NonStandardHaarWaveletDecomposition:                     // JPEG 2000
                var haarNonStandard = new NonStandardHaarWaveletDecomposition();
                haarNonStandard.DecomposeImageInPlace(image);
                dwtMatrix = new Matrix(image);
                break;

            case WaveletMethod.HaarCSharp:
                ForwardWaveletTransform.Transform2D(image, false, 2);
                dwtMatrix = new Matrix(image);
                break;

            case WaveletMethod.HaarWaveletCompress:
                int lastHeight = 0;
                int lastWidth  = 0;
                WaveletCompress.HaarTransform2D(image, 10000, out lastHeight, out lastWidth);
                dwtMatrix = new Matrix(image);
                break;

            default:
                break;
            }

            long endS = stopWatch.ElapsedTicks;

            Console.WriteLine("WaveletMethod: {0} Time in ticks: {1}", Enum.GetName(typeof(WaveletMethod), waveletMethod), (endS - startS));

            // increase all values
            const int mul = 50;

            double[][] haarImageNormalized5k = dwtMatrix.MatrixData.Select(i => i.Select(j => j * mul).ToArray()).ToArray();

            // convert to byte values (0 - 255)
            // duplicate the octave/ matlab method uint8
            var uint8 = new double[haarImageNormalized5k.Length][];

            for (int i = 0; i < haarImageNormalized5k.Length; i++)
            {
                uint8[i] = new double[haarImageNormalized5k.Length];
                for (int j = 0; j < haarImageNormalized5k[i].Length; j++)
                {
                    double v = haarImageNormalized5k[i][j];
                    if (v > 255)
                    {
                        uint8[i][j] = 255;
                    }
                    else if (v < 0)
                    {
                        uint8[i][j] = 0;
                    }
                    else
                    {
                        uint8[i][j] = (byte)haarImageNormalized5k[i][j];
                    }
                }
            }

            var uint8Matrix = new Matrix(uint8);

            return(uint8Matrix);
        }