/** * An alternative implementation of {@link #multTransA_small} that performs well on large * matrices. There is a relative performance hit when used on small matrices. * * @param A A matrix that is m by n. Not modified. * @param B A Vector that has length m. Not modified. * @param C A column vector that has length n. Modified. */ public static void multTransA_reorder(FMatrix1Row A, FMatrixD1 B, FMatrixD1 C) { if (C.numCols != 1) { throw new MatrixDimensionException("C is not a column vector"); } else if (C.numRows != A.numCols) { throw new MatrixDimensionException("C is not the expected length"); } if (B.numRows == 1) { if (A.numRows != B.numCols) { throw new MatrixDimensionException("A and B are not compatible"); } } else if (B.numCols == 1) { if (A.numRows != B.numRows) { throw new MatrixDimensionException("A and B are not compatible"); } } else { throw new MatrixDimensionException("B is not a vector"); } if (A.numRows == 0) { CommonOps_FDRM.fill(C, 0); return; } float B_val = B.get(0); for (int i = 0; i < A.numCols; i++) { C.set(i, A.get(i) * B_val); } int indexA = A.numCols; for (int i = 1; i < A.numRows; i++) { B_val = B.get(i); for (int j = 0; j < A.numCols; j++) { C.plus(j, A.get(indexA++) * B_val); } } }
/** * <p> * Performs a matrix vector multiply.<br> * <br> * c = A * b <br> * and<br> * c = A * b<sup>T</sup> <br> * <br> * c<sub>i</sub> = Sum{ j=1:n, a<sub>ij</sub> * b<sub>j</sub>}<br> * <br> * where A is a matrix, b is a column or transposed row vector, and c is a column vector. * </p> * * @param A A matrix that is m by n. Not modified. * @param B A vector that has length n. Not modified. * @param C A column vector that has length m. Modified. */ public static void mult(FMatrix1Row A, FMatrixD1 B, FMatrixD1 C) { if (C.numCols != 1) { throw new MatrixDimensionException("C is not a column vector"); } else if (C.numRows != A.numRows) { throw new MatrixDimensionException("C is not the expected length"); } if (B.numRows == 1) { if (A.numCols != B.numCols) { throw new MatrixDimensionException("A and B are not compatible"); } } else if (B.numCols == 1) { if (A.numCols != B.numRows) { throw new MatrixDimensionException("A and B are not compatible"); } } else { throw new MatrixDimensionException("B is not a vector"); } if (A.numCols == 0) { CommonOps_FDRM.fill(C, 0); return; } int indexA = 0; int cIndex = 0; float b0 = B.get(0); for (int i = 0; i < A.numRows; i++) { float total = A.get(indexA++) * b0; for (int j = 1; j < A.numCols; j++) { total += A.get(indexA++) * B.get(j); } C.set(cIndex++, total); } }
/** * <p> * Multiplies a householder reflection against a vector:<br> * <br> * y = (I + γ u u<sup>T</sup>)x<br> * </p> * <p> * The Householder reflection is used in some implementations of QR decomposition. * </p> * @param u A vector. Not modified. * @param x a vector. Not modified. * @param y Vector where the result are written to. */ public static void householder(float gamma, FMatrixD1 u, FMatrixD1 x, FMatrixD1 y) { int n = u.getNumElements(); float sum = 0; for (int i = 0; i < n; i++) { sum += u.get(i) * x.get(i); } for (int i = 0; i < n; i++) { y.set(i, x.get(i) + gamma * u.get(i) * sum); } }
/** * <p> * Performs a matrix vector multiply.<br> * <br> * C = A<sup>T</sup> * B <br> * where B is a column vector.<br> * or<br> * C = A<sup>T</sup> * B<sup>T</sup> <br> * where B is a row vector. <br> * <br> * c<sub>i</sub> = Sum{ j=1:n, a<sub>ji</sub> * b<sub>j</sub>}<br> * <br> * where A is a matrix, B is a column or transposed row vector, and C is a column vector. * </p> * <p> * This implementation is optimal for small matrices. There is a huge performance hit when * used on large matrices due to CPU cache issues. * </p> * * @param A A matrix that is m by n. Not modified. * @param B A that has length m and is a column. Not modified. * @param C A column vector that has length n. Modified. */ public static void multTransA_small(FMatrix1Row A, FMatrixD1 B, FMatrixD1 C) { if (C.numCols != 1) { throw new MatrixDimensionException("C is not a column vector"); } else if (C.numRows != A.numCols) { throw new MatrixDimensionException("C is not the expected length"); } if (B.numRows == 1) { if (A.numRows != B.numCols) { throw new MatrixDimensionException("A and B are not compatible"); } } else if (B.numCols == 1) { if (A.numRows != B.numRows) { throw new MatrixDimensionException("A and B are not compatible"); } } else { throw new MatrixDimensionException("B is not a vector"); } int cIndex = 0; for (int i = 0; i < A.numCols; i++) { float total = 0.0f; int indexA = i; for (int j = 0; j < A.numRows; j++) { total += A.get(indexA) * B.get(j); indexA += A.numCols; } C.set(cIndex++, total); } }