コード例 #1
0
        public void ValidateDensity(int shape, double invScale, double x, double pdf)
        {
            var n = new Erlang(shape, invScale);

            AssertHelpers.AlmostEqual(pdf, n.Density(x), 14);
            AssertHelpers.AlmostEqual(pdf, Erlang.PDF(shape, invScale, x), 14);
        }
コード例 #2
0
ファイル: ErlangTests.cs プロジェクト: wibble82/mmbot
        public void ValidateDensity(
            [Values(0, 0, 0, 1, 1, 1, 1, 1, 1, 10, 10, 10, 10, 10, 10, 10, 10, 10)] int shape,
            [Values(0.0, 0.0, 0.0, 0.1, 0.1, 0.1, 1.0, 1.0, 1.0, 10.0, 10.0, 10.0, 1.0, 1.0, 1.0, Double.PositiveInfinity, Double.PositiveInfinity, Double.PositiveInfinity)] double invScale,
            [Values(0.0, 1.0, 10.0, 0.0, 1.0, 10.0, 0.0, 1.0, 10.0, 0.0, 1.0, 10.0, 0.0, 1.0, 10.0, 0.0, 1.0, 10.0)] double x,
            [Values(0.0, 0.0, 0.0, 0.10000000000000000555111512312578270211815834045410156, 0.090483741803595961836995913651194571475319347018875963, 0.036787944117144234201693506390001264039984687455876246, 1.0, 0.36787944117144232159552377016146086744581113103176804, 0.000045399929762484851535591515560550610237918088866564953, 0.0, 1.2511003572113329898476497894772544708420990097708588, 1.0251532120868705806216092933926141802686541811003037e-30, 0.0, 0.0000010137771196302974029859010421116095333052555418644397, 0.12511003572113329898476497894772544708420990097708601, 0.0, 0.0, Double.PositiveInfinity)] double pdf)
        {
            var n = new Erlang(shape, invScale);

            AssertHelpers.AlmostEqual(pdf, n.Density(x), 14);
        }
コード例 #3
0
        /// <summary>
        /// Run example
        /// </summary>
        /// <a href="http://en.wikipedia.org/wiki/Erlang_distribution">Erlang distribution</a>
        public void Run()
        {
            // 1. Initialize the new instance of the Erlang distribution class with parameters Shape = 1, Scale = 2.
            var erlang = new Erlang(1, 2.0);

            Console.WriteLine(@"1. Initialize the new instance of the Erlang distribution class with parameters Shape = {0}, Scale = {1}", erlang.Shape, erlang.Scale);
            Console.WriteLine();

            // 2. Distributuion properties:
            Console.WriteLine(@"2. {0} distributuion properties:", erlang);

            // Cumulative distribution function
            Console.WriteLine(@"{0} - Сumulative distribution at location '0.3'", erlang.CumulativeDistribution(0.3).ToString(" #0.00000;-#0.00000"));

            // Probability density
            Console.WriteLine(@"{0} - Probability density at location '0.3'", erlang.Density(0.3).ToString(" #0.00000;-#0.00000"));

            // Log probability density
            Console.WriteLine(@"{0} - Log probability density at location '0.3'", erlang.DensityLn(0.3).ToString(" #0.00000;-#0.00000"));

            // Entropy
            Console.WriteLine(@"{0} - Entropy", erlang.Entropy.ToString(" #0.00000;-#0.00000"));

            // Largest element in the domain
            Console.WriteLine(@"{0} - Largest element in the domain", erlang.Maximum.ToString(" #0.00000;-#0.00000"));

            // Smallest element in the domain
            Console.WriteLine(@"{0} - Smallest element in the domain", erlang.Minimum.ToString(" #0.00000;-#0.00000"));

            // Mean
            Console.WriteLine(@"{0} - Mean", erlang.Mean.ToString(" #0.00000;-#0.00000"));

            // Mode
            Console.WriteLine(@"{0} - Mode", erlang.Mode.ToString(" #0.00000;-#0.00000"));

            // Variance
            Console.WriteLine(@"{0} - Variance", erlang.Variance.ToString(" #0.00000;-#0.00000"));

            // Standard deviation
            Console.WriteLine(@"{0} - Standard deviation", erlang.StdDev.ToString(" #0.00000;-#0.00000"));

            // Skewness
            Console.WriteLine(@"{0} - Skewness", erlang.Skewness.ToString(" #0.00000;-#0.00000"));
            Console.WriteLine();

            // 3. Generate 10 samples of the Erlang distribution
            Console.WriteLine(@"3. Generate 10 samples of the Erlang distribution");
            for (var i = 0; i < 10; i++)
            {
                Console.Write(erlang.Sample().ToString("N05") + @" ");
            }

            Console.WriteLine();
            Console.WriteLine();

            // 4. Generate 100000 samples of the Erlang(1, 2.0) distribution and display histogram
            Console.WriteLine(@"4. Generate 100000 samples of the Erlang(1, 2.0) distribution and display histogram");
            var data = new double[100000];

            for (var i = 0; i < data.Length; i++)
            {
                data[i] = erlang.Sample();
            }

            ConsoleHelper.DisplayHistogram(data);
            Console.WriteLine();

            // 5. Generate 100000 samples of the Erlang(3, 2.0) distribution and display histogram
            Console.WriteLine(@"5. Generate 100000 samples of the Erlang(3, 2.0) distribution and display histogram");
            erlang.Shape = 3;
            for (var i = 0; i < data.Length; i++)
            {
                data[i] = erlang.Sample();
            }

            ConsoleHelper.DisplayHistogram(data);
            Console.WriteLine();

            // 6. Generate 100000 samples of the Erlang(9, 0.5) distribution and display histogram
            Console.WriteLine(@"6. Generate 100000 samples of the Erlang(9, 0.5) distribution and display histogram");
            erlang.Shape = 9;
            erlang.Scale = 0.5;
            for (var i = 0; i < data.Length; i++)
            {
                data[i] = erlang.Sample();
            }

            ConsoleHelper.DisplayHistogram(data);
        }
コード例 #4
0
 public void ValidateDensity(
     [Values(0, 0, 0, 1, 1, 1, 1, 1, 1, 10, 10, 10, 10, 10, 10, 10, 10, 10)] int shape, 
     [Values(0.0, 0.0, 0.0, 0.1, 0.1, 0.1, 1.0, 1.0, 1.0, 10.0, 10.0, 10.0, 1.0, 1.0, 1.0, Double.PositiveInfinity, Double.PositiveInfinity, Double.PositiveInfinity)] double invScale, 
     [Values(0.0, 1.0, 10.0, 0.0, 1.0, 10.0, 0.0, 1.0, 10.0, 0.0, 1.0, 10.0, 0.0, 1.0, 10.0, 0.0, 1.0, 10.0)] double x, 
     [Values(0.0, 0.0, 0.0, 0.10000000000000000555111512312578270211815834045410156, 0.090483741803595961836995913651194571475319347018875963, 0.036787944117144234201693506390001264039984687455876246, 1.0, 0.36787944117144232159552377016146086744581113103176804, 0.000045399929762484851535591515560550610237918088866564953, 0.0, 1.2511003572113329898476497894772544708420990097708588, 1.0251532120868705806216092933926141802686541811003037e-30, 0.0, 0.0000010137771196302974029859010421116095333052555418644397, 0.12511003572113329898476497894772544708420990097708601, 0.0, 0.0, Double.PositiveInfinity)] double pdf)
 {
     var n = new Erlang(shape, invScale);
     AssertHelpers.AlmostEqual(pdf, n.Density(x), 14);
 }
コード例 #5
0
 public void ValidateDensity(int shape, double invScale, double x, double pdf)
 {
     var n = new Erlang(shape, invScale);
     AssertHelpers.AlmostEqual(pdf, n.Density(x), 14);
 }