コード例 #1
0
        /// <inheritdoc/>
        public Object Read(Stream istream)
        {
            BayesianNetwork  result = new BayesianNetwork();
            EncogReadHelper  input  = new EncogReadHelper(istream);
            EncogFileSection section;
            String           queryType   = "";
            String           queryStr    = "";
            String           contentsStr = "";

            while ((section = input.ReadNextSection()) != null)
            {
                if (section.SectionName.Equals("BAYES-NETWORK") &&
                    section.SubSectionName.Equals("BAYES-PARAM"))
                {
                    IDictionary <String, String> p = section.ParseParams();
                    queryType   = p["queryType"];
                    queryStr    = p["query"];
                    contentsStr = p["contents"];
                }
                if (section.SectionName.Equals("BAYES-NETWORK") &&
                    section.SubSectionName.Equals("BAYES-TABLE"))
                {
                    result.Contents = contentsStr;

                    // first, define relationships (1st pass)
                    foreach (String line in section.Lines)
                    {
                        result.DefineRelationship(line);
                    }

                    result.FinalizeStructure();

                    // now define the probabilities (2nd pass)
                    foreach (String line in section.Lines)
                    {
                        result.DefineProbability(line);
                    }
                }
                if (section.SectionName.Equals("BAYES-NETWORK") &&
                    section.SubSectionName.Equals("BAYES-PROPERTIES"))
                {
                    IDictionary <String, String> paras = section.ParseParams();
                    EngineArray.PutAll(paras, result.Properties);
                }
            }

            // define query, if it exists
            if (queryType.Length > 0)
            {
                IBayesianQuery query = null;
                if (queryType.Equals("EnumerationQuery"))
                {
                    query = new EnumerationQuery(result);
                }
                else
                {
                    query = new SamplingQuery(result);
                }

                if (query != null && queryStr.Length > 0)
                {
                    result.Query = query;
                    result.DefineClassificationStructure(queryStr);
                }
            }

            return(result);
        }
コード例 #2
0
ファイル: ArrayDataCODEC.cs プロジェクト: shturm/encog-prim
 /// <inheritdoc/>
 public void Write(double[] input, double[] ideal, double significance)
 {
     EngineArray.ArrayCopy(input, _input[_index]);
     EngineArray.ArrayCopy(ideal, _ideal[_index]);
     _index++;
 }
コード例 #3
0
        /// <summary>
        /// Derive the minimum, using a conjugate gradient method.
        /// </summary>
        ///
        /// <param name="maxIterations">The max iterations.</param>
        /// <param name="maxError">Stop at this error rate.</param>
        /// <param name="eps">The machine's precision.</param>
        /// <param name="tol">The convergence tolerance.</param>
        /// <param name="network">The network to get the error from.</param>
        /// <param name="n">The number of variables.</param>
        /// <param name="x">The independent variable.</param>
        /// <param name="ystart">The start for y.</param>
        /// <param name="bs">Work vector, must have n elements.</param>
        /// <param name="direc">Work vector, must have n elements.</param>
        /// <param name="g">Work vector, must have n elements.</param>
        /// <param name="h">Work vector, must have n elements.</param>
        /// <param name="deriv2">Work vector, must have n elements.</param>
        /// <returns>The best error.</returns>
        public double Calculate(int maxIterations, double maxError,
                                double eps, double tol,
                                ICalculationCriteria network, int n, double[] x,
                                double ystart, double[] bs, double[] direc,
                                double[] g, double[] h, double[] deriv2)
        {
            var globalMinimum = new GlobalMinimumSearch();

            double fbest = network.CalcErrorWithMultipleSigma(x, direc, deriv2,
                                                              true);
            double prevBest = 1.0e30d;

            for (int i = 0; i < n; i++)
            {
                direc[i] = -direc[i];
            }

            EngineArray.ArrayCopy(direc, g);
            EngineArray.ArrayCopy(direc, h);

            int convergenceCounter = 0;
            int poorCj             = 0;

            // Main loop
            for (int iteration = 0; iteration < maxIterations; iteration++)
            {
                if (fbest < maxError)
                {
                    break;
                }

                EncogLogging.Log(EncogLogging.LevelInfo,
                                 "Beginning internal Iteration #" + iteration + ", currentError=" + fbest + ",target=" + maxError);

                // Check for convergence
                double toler;
                if (prevBest <= 1.0d)
                {
                    toler = tol;
                }
                else
                {
                    toler = tol * prevBest;
                }

                // Stop if there is little improvement
                if ((prevBest - fbest) <= toler)
                {
                    if (++convergenceCounter >= 3)
                    {
                        break;
                    }
                }
                else
                {
                    convergenceCounter = 0;
                }

                double dot2 = 0;
                double dlen = 0;
                double dot1 = dot2 = dlen = 0.0d;
                double high = 1.0e-4d;
                for (int i = 0; i < n; i++)
                {
                    bs[i] = x[i];
                    if (deriv2[i] > high)
                    {
                        high = deriv2[i];
                    }
                    dot1 += direc[i] * g[i];                 // Directional first derivative
                    dot2 += direc[i] * direc[i] * deriv2[i]; // and second
                    dlen += direc[i] * direc[i];             // Length of search vector
                }

                double scale;

                if (Math.Abs(dot2) < EncogFramework.DefaultDoubleEqual)
                {
                    scale = 0;
                }
                else
                {
                    scale = dot1 / dot2;
                }
                high = 1.5d / high;
                if (high < 1.0e-4d)
                {
                    high = 1.0e-4d;
                }

                if (scale < 0.0d)
                {
                    scale = high;
                }
                else if (scale < 0.1d * high)
                {
                    scale = 0.1d * high;
                }
                else if (scale > 10.0d * high)
                {
                    scale = 10.0d * high;
                }

                prevBest         = fbest;
                globalMinimum.Y2 = fbest;

                globalMinimum.FindBestRange(0.0d, 2.0d * scale, -3, false, maxError,
                                            network);

                if (globalMinimum.Y2 < maxError)
                {
                    if (globalMinimum.Y2 < fbest)
                    {
                        for (int i = 0; i < n; i++)
                        {
                            x[i] = bs[i] + globalMinimum.Y2 * direc[i];
                            if (x[i] < 1.0e-10d)
                            {
                                x[i] = 1.0e-10d;
                            }
                        }
                        fbest = globalMinimum.Y2;
                    }
                    else
                    {
                        for (int i = 0; i < n; i++)
                        {
                            x[i] = bs[i];
                        }
                    }
                    break;
                }

                if (convergenceCounter > 0)
                {
                    fbest = globalMinimum.Brentmin(20, maxError, eps, 1.0e-7d,
                                                   network, globalMinimum.Y2);
                }
                else
                {
                    fbest = globalMinimum.Brentmin(10, maxError, 1.0e-6d, 1.0e-5d,
                                                   network, globalMinimum.Y2);
                }

                for (int i = 0; i < n; i++)
                {
                    x[i] = bs[i] + globalMinimum.X2 * direc[i];
                    if (x[i] < 1.0e-10d)
                    {
                        x[i] = 1.0e-10d;
                    }
                }

                double improvement = (prevBest - fbest) / prevBest;

                if (fbest < maxError)
                {
                    break;
                }

                for (int i = 0; i < n; i++)
                {
                    direc[i] = -direc[i]; // negative gradient
                }

                double gam = Gamma(n, g, direc);

                if (gam < 0.0d)
                {
                    gam = 0.0d;
                }

                if (gam > 10.0d)
                {
                    gam = 10.0d;
                }

                if (improvement < 0.001d)
                {
                    ++poorCj;
                }
                else
                {
                    poorCj = 0;
                }

                if (poorCj >= 2)
                {
                    if (gam > 1.0d)
                    {
                        gam = 1.0d;
                    }
                }

                if (poorCj >= 6)
                {
                    poorCj = 0;
                    gam    = 0.0d;
                }

                FindNewDir(n, gam, g, h, direc);
            }

            return(fbest);
        }
コード例 #4
0
 /// <summary>
 /// Construct a fold from the specified flat network.
 /// </summary>
 ///
 /// <param name="flat">THe flat network.</param>
 public NetworkFold(FlatNetwork flat)
 {
     _weights = EngineArray.ArrayCopy(flat.Weights);
     _output  = EngineArray.ArrayCopy(flat.LayerOutput);
 }
コード例 #5
0
 /// <summary>
 /// Copy the weights and output from the network.
 /// </summary>
 ///
 /// <param name="source">The network to copy from.</param>
 public void CopyFromNetwork(FlatNetwork source)
 {
     EngineArray.ArrayCopy(source.Weights, _weights);
     EngineArray.ArrayCopy(source.LayerOutput, _output);
 }
コード例 #6
0
ファイル: Utility.cs プロジェクト: sergheim/encog-dotnet-core
 internal static void arraycopy(float[] source, int sourceIndex, float[] target, int targetIndex, int size)
 {
     EngineArray.ArrayCopy(source, sourceIndex, target, targetIndex, size);
 }
コード例 #7
0
 /// <summary>
 /// Construct a truth table line.
 /// </summary>
 /// <param name="prob">The probability.</param>
 /// <param name="result">The result.</param>
 /// <param name="args">The arguments.</param>
 public TableLine(double prob, int result, int[] args)
 {
     Probability = prob;
     _result     = result;
     _arguments  = EngineArray.ArrayCopy(args);
 }
コード例 #8
0
 /// <summary>
 /// Set the current state.
 /// </summary>
 /// <param name="s">The new current state.</param>
 public void SetCurrentState(double[] s)
 {
     _currentState = new BiPolarMLData(s.Length);
     EngineArray.ArrayCopy(s, _currentState.Data);
 }
コード例 #9
0
        private void ProcessCalc()
        {
            AnalystField firstOutputField = null;
            int          barsNeeded       = Math.Abs(Analyst.DetermineMinTimeSlice());

            IndentLevel = 2;
            AddLine("if( _inputCount>0 && CurrentBar>=" + barsNeeded + " )");
            AddLine("{");
            IndentIn();
            AddLine("double[] input = new double[_inputCount];");
            AddLine("double[] output = new double[_outputCount];");

            int idx = 0;

            foreach (AnalystField field in Analyst.Script.Normalize
                     .NormalizedFields)
            {
                if (field.Input)
                {
                    String    str;
                    DataField df = Analyst.Script
                                   .FindDataField(field.Name);

                    switch (field.Action)
                    {
                    case NormalizationAction.PassThrough:
                        str = EngineArray.Replace(df.Source, "##", "" + (-field.TimeSlice));
                        AddLine("input[" + idx + "]=" + str + ";");
                        idx++;
                        break;

                    case NormalizationAction.Normalize:
                        str = EngineArray.Replace(df.Source, "##", "" + (-field.TimeSlice));
                        AddLine("input[" + idx + "]=Norm(" + str + ","
                                + field.NormalizedHigh + ","
                                + field.NormalizedLow + ","
                                + field.ActualHigh + ","
                                + field.ActualLow + ");");
                        idx++;
                        break;

                    case NormalizationAction.Ignore:
                        break;

                    default:
                        throw new AnalystCodeGenerationError(
                                  "Can't generate Ninjascript code, unsupported normalizatoin action: "
                                  + field.Action.ToString());
                    }
                }
                if (field.Output)
                {
                    if (firstOutputField == null)
                    {
                        firstOutputField = field;
                    }
                }
            }

            if (firstOutputField != null)
            {
                AddLine("Compute(input,output);");
                AddLine("Output.Set(DeNorm(output[0]" + ","
                        + firstOutputField.NormalizedHigh + ","
                        + firstOutputField.NormalizedLow + ","
                        + firstOutputField.ActualHigh + ","
                        + firstOutputField.ActualLow + "));");
                IndentOut();
            }

            AddLine("}");
            IndentLevel = 2;
        }
コード例 #10
0
 /// <summary>
 ///
 /// </summary>
 ///
 public void Reset(int seed)
 {
     CurrentState.Clear();
     EngineArray.Fill(_weights, 0.0d);
 }
コード例 #11
0
 /// <summary>
 /// Clear any connection weights.
 /// </summary>
 ///
 public void Clear()
 {
     EngineArray.Fill(_weights, 0);
 }
コード例 #12
0
        /// <summary>
        /// Read an object.
        /// </summary>
        ///
        public Object Read(Stream mask0)
        {
            var result = new BasicNetwork();
            var flat   = new FlatNetwork();
            var ins0   = new EncogReadHelper(mask0);
            EncogFileSection section;

            while ((section = ins0.ReadNextSection()) != null)
            {
                if (section.SectionName.Equals("BASIC") &&
                    section.SubSectionName.Equals("PARAMS"))
                {
                    IDictionary <String, String> paras = section.ParseParams();
                    EngineArray.PutAll(paras, result.Properties);
                }
                if (section.SectionName.Equals("BASIC") &&
                    section.SubSectionName.Equals("NETWORK"))
                {
                    IDictionary <String, String> p = section.ParseParams();

                    flat.BeginTraining = EncogFileSection.ParseInt(p,
                                                                   BasicNetwork.TagBeginTraining);
                    flat.ConnectionLimit = EncogFileSection.ParseDouble(p,
                                                                        BasicNetwork.TagConnectionLimit);
                    flat.ContextTargetOffset = EncogFileSection.ParseIntArray(
                        p, BasicNetwork.TagContextTargetOffset);
                    flat.ContextTargetSize = EncogFileSection.ParseIntArray(
                        p, BasicNetwork.TagContextTargetSize);
                    flat.EndTraining = EncogFileSection.ParseInt(p,
                                                                 BasicNetwork.TagEndTraining);
                    flat.HasContext = EncogFileSection.ParseBoolean(p,
                                                                    BasicNetwork.TagHasContext);
                    flat.InputCount = EncogFileSection.ParseInt(p,
                                                                PersistConst.InputCount);
                    flat.LayerCounts = EncogFileSection.ParseIntArray(p,
                                                                      BasicNetwork.TagLayerCounts);
                    flat.LayerFeedCounts = EncogFileSection.ParseIntArray(p,
                                                                          BasicNetwork.TagLayerFeedCounts);
                    flat.LayerContextCount = EncogFileSection.ParseIntArray(
                        p, BasicNetwork.TagLayerContextCount);
                    flat.LayerIndex = EncogFileSection.ParseIntArray(p,
                                                                     BasicNetwork.TagLayerIndex);
                    flat.LayerOutput = section.ParseDoubleArray(p, PersistConst.Output);
                    flat.LayerSums   = new double[flat.LayerOutput.Length];
                    flat.OutputCount = EncogFileSection.ParseInt(p,
                                                                 PersistConst.OutputCount);
                    flat.WeightIndex = EncogFileSection.ParseIntArray(p,
                                                                      BasicNetwork.TagWeightIndex);
                    flat.Weights        = section.ParseDoubleArray(p, PersistConst.Weights);
                    flat.BiasActivation = section.ParseDoubleArray(p, BasicNetwork.TagBiasActivation);
                }
                else if (section.SectionName.Equals("BASIC") &&
                         section.SubSectionName.Equals("ACTIVATION"))
                {
                    int index = 0;

                    flat.ActivationFunctions = new IActivationFunction[flat.LayerCounts.Length];

                    foreach (String line in section.Lines)
                    {
                        IActivationFunction af;
                        IList <String>      cols = EncogFileSection
                                                   .SplitColumns(line);
                        String name = ReflectionUtil.AfPath
                                      + cols[0];
                        try
                        {
                            af = (IActivationFunction)ReflectionUtil.LoadObject(name);
                        }
                        catch (TypeLoadException e)
                        {
                            throw new PersistError(e);
                        }
                        catch (TargetException e)
                        {
                            throw new PersistError(e);
                        }
                        catch (MemberAccessException e)
                        {
                            throw new PersistError(e);
                        }

                        for (int i = 0; i < af.ParamNames.Length; i++)
                        {
                            af.Params[i] =
                                CSVFormat.EgFormat.Parse(cols[i + 1]);
                        }

                        flat.ActivationFunctions[index++] = af;
                    }
                }
            }

            result.Structure.Flat = flat;

            return(result);
        }
コード例 #13
0
        /// <summary>
        /// Perform a SVD fit.
        /// </summary>
        /// <param name="x">The X matrix.</param>
        /// <param name="y">The Y matrix.</param>
        /// <param name="a">The A matrix.</param>
        /// <param name="funcs">The RBF functions.</param>
        /// <returns>The fit.</returns>
        public static double Svdfit(double[][] x, double[][] y, double[][] a,
                                    IRadialBasisFunction[] funcs)
        {
            int    i, j, k;
            double wmax, tmp, thresh, sum, TOL = 1e-13d;

            //Allocated memory for svd matrices
            double[][] u = EngineArray.AllocateDouble2D(x.Length, funcs.Length);
            double[][] v = EngineArray.AllocateDouble2D(funcs.Length, funcs.Length);
            var        w = new double[funcs.Length];

            //Fill input matrix with values based on fitting functions and input coordinates
            for (i = 0; i < x.Length; i++)
            {
                for (j = 0; j < funcs.Length; j++)
                {
                    u[i][j] = funcs[j].Calculate(x[i]);
                }
            }

            //Perform decomposition
            Svdcmp(u, w, v);

            //Check for w values that are close to zero and replace them with zeros such that they are ignored in backsub
            wmax = 0;
            for (j = 0; j < funcs.Length; j++)
            {
                if (w[j] > wmax)
                {
                    wmax = w[j];
                }
            }

            thresh = TOL * wmax;

            for (j = 0; j < funcs.Length; j++)
            {
                if (w[j] < thresh)
                {
                    w[j] = 0;
                }
            }

            //Perform back substitution to get result
            Svdbksb(u, w, v, y, a);

            //Calculate chi squared for the fit
            double chisq = 0;

            for (k = 0; k < y[0].Length; k++)
            {
                for (i = 0; i < y.Length; i++)
                {
                    sum = 0.0d;
                    for (j = 0; j < funcs.Length; j++)
                    {
                        sum += a[j][k] * funcs[j].Calculate(x[i]);
                    }
                    tmp    = (y[i][k] - sum);
                    chisq += tmp * tmp;
                }
            }

            return(Math.Sqrt(chisq / (y.Length * y[0].Length)));
        }
コード例 #14
0
 /// <inheritdoc/>
 public void Write(double[] input, double[] ideal)
 {
     EngineArray.ArrayCopy(input, this.input[index]);
     EngineArray.ArrayCopy(ideal, this.ideal[index]);
     index++;
 }
コード例 #15
0
        /// <inheritdoc />
        private void InternalCompute(int outputNeuron)
        {
            int row   = 0;
            var error = new ErrorCalculation();

            var derivative = new double[_weightCount];

            // Loop over every training element
            foreach (IMLDataPair pair in _training)
            {
                EngineArray.Fill(derivative, 0);
                IMLData networkOutput = _network.Compute(pair.Input);
                double  e             = pair.Ideal[outputNeuron] - networkOutput[outputNeuron];
                error.UpdateError(networkOutput[outputNeuron], pair.Ideal[outputNeuron]);

                int currentWeight = 0;

                // loop over the output weights
                int outputFeedCount = _network.GetLayerTotalNeuronCount(_network.LayerCount - 2);
                for (int i = 0; i < _network.OutputCount; i++)
                {
                    for (int j = 0; j < outputFeedCount; j++)
                    {
                        double jc;

                        if (i == outputNeuron)
                        {
                            jc = ComputeDerivative(pair.Input, outputNeuron,
                                                   currentWeight, _dStep,
                                                   networkOutput[outputNeuron], row);
                        }
                        else
                        {
                            jc = 0;
                        }

                        _gradients[currentWeight] += jc * e;
                        derivative[currentWeight]  = jc;
                        currentWeight++;
                    }
                }

                // Loop over every weight in the neural network
                while (currentWeight < _network.Flat.Weights.Length)
                {
                    double jc = ComputeDerivative(
                        pair.Input, outputNeuron, currentWeight,
                        _dStep,
                        networkOutput[outputNeuron], row);
                    derivative[currentWeight]  = jc;
                    _gradients[currentWeight] += jc * e;
                    currentWeight++;
                }

                row++;
                UpdateHessian(derivative);
            }


            _sse += error.CalculateSSE();
        }
コード例 #16
0
        /// <summary>
        /// Construct the singular value decomposition
        /// </summary>
        /// <param name="Arg">Rectangular matrix</param>
        public SingularValueDecomposition(Matrix Arg)
        {
            // Derived from LINPACK code.
            // Initialize.
            double[][] A = Arg.GetArrayCopy();
            m = Arg.Rows;
            n = Arg.Cols;

            /*
             * Apparently the failing cases are only a proper subset of (m<n), so
             * let's not throw error. Correct fix to come later? if (m<n) { throw
             * new IllegalArgumentException("Jama SVD only works for m >= n"); }
             */
            int nu = Math.Min(m, n);

            s       = new double[Math.Min(m + 1, n)];
            umatrix = EngineArray.AllocateDouble2D(m, nu);
            vmatrix = EngineArray.AllocateDouble2D(n, n);
            var  e     = new double[n];
            var  work  = new double[m];
            bool wantu = true;
            bool wantv = true;

            // Reduce A to bidiagonal form, storing the diagonal elements
            // in s and the super-diagonal elements in e.

            int nct = Math.Min(m - 1, n);
            int nrt = Math.Max(0, Math.Min(n - 2, m));

            for (int k = 0; k < Math.Max(nct, nrt); k++)
            {
                if (k < nct)
                {
                    // Compute the transformation for the k-th column and
                    // place the k-th diagonal in s[k].
                    // Compute 2-norm of k-th column without under/overflow.
                    s[k] = 0;
                    for (int i = k; i < m; i++)
                    {
                        s[k] = EncogMath.Hypot(s[k], A[i][k]);
                    }
                    if (s[k] != 0.0)
                    {
                        if (A[k][k] < 0.0)
                        {
                            s[k] = -s[k];
                        }
                        for (int i = k; i < m; i++)
                        {
                            A[i][k] /= s[k];
                        }
                        A[k][k] += 1.0;
                    }
                    s[k] = -s[k];
                }
                for (int j = k + 1; j < n; j++)
                {
                    if ((k < nct) & (s[k] != 0.0))
                    {
                        // Apply the transformation.

                        double t = 0;
                        for (int i = k; i < m; i++)
                        {
                            t += A[i][k] * A[i][j];
                        }
                        t = -t / A[k][k];
                        for (int i = k; i < m; i++)
                        {
                            A[i][j] += t * A[i][k];
                        }
                    }

                    // Place the k-th row of A into e for the
                    // subsequent calculation of the row transformation.

                    e[j] = A[k][j];
                }
                if (wantu & (k < nct))
                {
                    // Place the transformation in U for subsequent back
                    // multiplication.

                    for (int i = k; i < m; i++)
                    {
                        umatrix[i][k] = A[i][k];
                    }
                }
                if (k < nrt)
                {
                    // Compute the k-th row transformation and place the
                    // k-th super-diagonal in e[k].
                    // Compute 2-norm without under/overflow.
                    e[k] = 0;
                    for (int i = k + 1; i < n; i++)
                    {
                        e[k] = EncogMath.Hypot(e[k], e[i]);
                    }
                    if (e[k] != 0.0)
                    {
                        if (e[k + 1] < 0.0)
                        {
                            e[k] = -e[k];
                        }
                        for (int i = k + 1; i < n; i++)
                        {
                            e[i] /= e[k];
                        }
                        e[k + 1] += 1.0;
                    }
                    e[k] = -e[k];
                    if ((k + 1 < m) & (e[k] != 0.0))
                    {
                        // Apply the transformation.

                        for (int i = k + 1; i < m; i++)
                        {
                            work[i] = 0.0;
                        }
                        for (int j = k + 1; j < n; j++)
                        {
                            for (int i = k + 1; i < m; i++)
                            {
                                work[i] += e[j] * A[i][j];
                            }
                        }
                        for (int j = k + 1; j < n; j++)
                        {
                            double t = -e[j] / e[k + 1];
                            for (int i = k + 1; i < m; i++)
                            {
                                A[i][j] += t * work[i];
                            }
                        }
                    }
                    if (wantv)
                    {
                        // Place the transformation in V for subsequent
                        // back multiplication.

                        for (int i = k + 1; i < n; i++)
                        {
                            vmatrix[i][k] = e[i];
                        }
                    }
                }
            }

            // Set up the final bidiagonal matrix or order p.

            int p = Math.Min(n, m + 1);

            if (nct < n)
            {
                s[nct] = A[nct][nct];
            }
            if (m < p)
            {
                s[p - 1] = 0.0;
            }
            if (nrt + 1 < p)
            {
                e[nrt] = A[nrt][p - 1];
            }
            e[p - 1] = 0.0;

            // If required, generate U.

            if (wantu)
            {
                for (int j = nct; j < nu; j++)
                {
                    for (int i = 0; i < m; i++)
                    {
                        umatrix[i][j] = 0.0;
                    }
                    umatrix[j][j] = 1.0;
                }
                for (int k = nct - 1; k >= 0; k--)
                {
                    if (s[k] != 0.0)
                    {
                        for (int j = k + 1; j < nu; j++)
                        {
                            double t = 0;
                            for (int i = k; i < m; i++)
                            {
                                t += umatrix[i][k] * umatrix[i][j];
                            }
                            t = -t / umatrix[k][k];
                            for (int i = k; i < m; i++)
                            {
                                umatrix[i][j] += t * umatrix[i][k];
                            }
                        }
                        for (int i = k; i < m; i++)
                        {
                            umatrix[i][k] = -umatrix[i][k];
                        }
                        umatrix[k][k] = 1.0 + umatrix[k][k];
                        for (int i = 0; i < k - 1; i++)
                        {
                            umatrix[i][k] = 0.0;
                        }
                    }
                    else
                    {
                        for (int i = 0; i < m; i++)
                        {
                            umatrix[i][k] = 0.0;
                        }
                        umatrix[k][k] = 1.0;
                    }
                }
            }

            // If required, generate V.

            if (wantv)
            {
                for (int k = n - 1; k >= 0; k--)
                {
                    if ((k < nrt) & (e[k] != 0.0))
                    {
                        for (int j = k + 1; j < nu; j++)
                        {
                            double t = 0;
                            for (int i = k + 1; i < n; i++)
                            {
                                t += vmatrix[i][k] * vmatrix[i][j];
                            }
                            t = -t / vmatrix[k + 1][k];
                            for (int i = k + 1; i < n; i++)
                            {
                                vmatrix[i][j] += t * vmatrix[i][k];
                            }
                        }
                    }
                    for (int i = 0; i < n; i++)
                    {
                        vmatrix[i][k] = 0.0;
                    }
                    vmatrix[k][k] = 1.0;
                }
            }

            // Main iteration loop for the singular values.

            int    pp   = p - 1;
            int    iter = 0;
            double eps  = Math.Pow(2.0, -52.0);
            double tiny = Math.Pow(2.0, -966.0);

            while (p > 0)
            {
                int k, kase;

                // Here is where a test for too many iterations would go.

                // This section of the program inspects for
                // negligible elements in the s and e arrays. On
                // completion the variables kase and k are set as follows.

                // kase = 1 if s(p) and e[k-1] are negligible and k<p
                // kase = 2 if s(k) is negligible and k<p
                // kase = 3 if e[k-1] is negligible, k<p, and
                // s(k), ..., s(p) are not negligible (qr step).
                // kase = 4 if e(p-1) is negligible (convergence).

                for (k = p - 2; k >= -1; k--)
                {
                    if (k == -1)
                    {
                        break;
                    }
                    if (Math.Abs(e[k]) <= tiny + eps
                        * (Math.Abs(s[k]) + Math.Abs(s[k + 1])))
                    {
                        e[k] = 0.0;
                        break;
                    }
                }
                if (k == p - 2)
                {
                    kase = 4;
                }
                else
                {
                    int ks;
                    for (ks = p - 1; ks >= k; ks--)
                    {
                        if (ks == k)
                        {
                            break;
                        }
                        double t = (ks != p ? Math.Abs(e[ks]) : 0.0)
                                   + (ks != k + 1 ? Math.Abs(e[ks - 1]) : 0.0);
                        if (Math.Abs(s[ks]) <= tiny + eps * t)
                        {
                            s[ks] = 0.0;
                            break;
                        }
                    }
                    if (ks == k)
                    {
                        kase = 3;
                    }
                    else if (ks == p - 1)
                    {
                        kase = 1;
                    }
                    else
                    {
                        kase = 2;
                        k    = ks;
                    }
                }
                k++;

                // Perform the task indicated by kase.

                switch (kase)
                {
                // Deflate negligible s(p).

                case 1:
                {
                    double f = e[p - 2];
                    e[p - 2] = 0.0;
                    for (int j = p - 2; j >= k; j--)
                    {
                        double t  = EncogMath.Hypot(s[j], f);
                        double cs = s[j] / t;
                        double sn = f / t;
                        s[j] = t;
                        if (j != k)
                        {
                            f        = -sn * e[j - 1];
                            e[j - 1] = cs * e[j - 1];
                        }
                        if (wantv)
                        {
                            for (int i = 0; i < n; i++)
                            {
                                t = cs * vmatrix[i][j] + sn * vmatrix[i][p - 1];
                                vmatrix[i][p - 1] = -sn * vmatrix[i][j] + cs * vmatrix[i][p - 1];
                                vmatrix[i][j]     = t;
                            }
                        }
                    }
                }
                break;

                // Split at negligible s(k).

                case 2:
                {
                    double f = e[k - 1];
                    e[k - 1] = 0.0;
                    for (int j = k; j < p; j++)
                    {
                        double t  = EncogMath.Hypot(s[j], f);
                        double cs = s[j] / t;
                        double sn = f / t;
                        s[j] = t;
                        f    = -sn * e[j];
                        e[j] = cs * e[j];
                        if (wantu)
                        {
                            for (int i = 0; i < m; i++)
                            {
                                t = cs * umatrix[i][j] + sn * umatrix[i][k - 1];
                                umatrix[i][k - 1] = -sn * umatrix[i][j] + cs * umatrix[i][k - 1];
                                umatrix[i][j]     = t;
                            }
                        }
                    }
                }
                break;

                // Perform one qr step.

                case 3:
                {
                    // Calculate the shift.

                    double scale = Math.Max(Math.Max(Math
                                                     .Max(Math.Max(Math.Abs(s[p - 1]), Math.Abs(s[p - 2])),
                                                          Math.Abs(e[p - 2])), Math.Abs(s[k])), Math
                                            .Abs(
                                                e[k]));
                    double sp    = s[p - 1] / scale;
                    double spm1  = s[p - 2] / scale;
                    double epm1  = e[p - 2] / scale;
                    double sk    = s[k] / scale;
                    double ek    = e[k] / scale;
                    double b     = ((spm1 + sp) * (spm1 - sp) + epm1 * epm1) / 2.0;
                    double c     = (sp * epm1) * (sp * epm1);
                    double shift = 0.0;
                    if ((b != 0.0) | (c != 0.0))
                    {
                        shift = Math.Sqrt(b * b + c);
                        if (b < 0.0)
                        {
                            shift = -shift;
                        }
                        shift = c / (b + shift);
                    }
                    double f = (sk + sp) * (sk - sp) + shift;
                    double g = sk * ek;

                    // Chase zeros.

                    for (int j = k; j < p - 1; j++)
                    {
                        double t  = EncogMath.Hypot(f, g);
                        double cs = f / t;
                        double sn = g / t;
                        if (j != k)
                        {
                            e[j - 1] = t;
                        }
                        f        = cs * s[j] + sn * e[j];
                        e[j]     = cs * e[j] - sn * s[j];
                        g        = sn * s[j + 1];
                        s[j + 1] = cs * s[j + 1];
                        if (wantv)
                        {
                            for (int i = 0; i < n; i++)
                            {
                                t = cs * vmatrix[i][j] + sn * vmatrix[i][j + 1];
                                vmatrix[i][j + 1] = -sn * vmatrix[i][j] + cs * vmatrix[i][j + 1];
                                vmatrix[i][j]     = t;
                            }
                        }
                        t        = EncogMath.Hypot(f, g);
                        cs       = f / t;
                        sn       = g / t;
                        s[j]     = t;
                        f        = cs * e[j] + sn * s[j + 1];
                        s[j + 1] = -sn * e[j] + cs * s[j + 1];
                        g        = sn * e[j + 1];
                        e[j + 1] = cs * e[j + 1];
                        if (wantu && (j < m - 1))
                        {
                            for (int i = 0; i < m; i++)
                            {
                                t = cs * umatrix[i][j] + sn * umatrix[i][j + 1];
                                umatrix[i][j + 1] = -sn * umatrix[i][j] + cs * umatrix[i][j + 1];
                                umatrix[i][j]     = t;
                            }
                        }
                    }
                    e[p - 2] = f;
                    iter     = iter + 1;
                }
                break;

                // Convergence.

                case 4:
                {
                    // Make the singular values positive.

                    if (s[k] <= 0.0)
                    {
                        s[k] = (s[k] < 0.0 ? -s[k] : 0.0);
                        if (wantv)
                        {
                            for (int i = 0; i <= pp; i++)
                            {
                                vmatrix[i][k] = -vmatrix[i][k];
                            }
                        }
                    }

                    // Order the singular values.

                    while (k < pp)
                    {
                        if (s[k] >= s[k + 1])
                        {
                            break;
                        }
                        double t = s[k];
                        s[k]     = s[k + 1];
                        s[k + 1] = t;
                        if (wantv && (k < n - 1))
                        {
                            for (int i = 0; i < n; i++)
                            {
                                t = vmatrix[i][k + 1];
                                vmatrix[i][k + 1] = vmatrix[i][k];
                                vmatrix[i][k]     = t;
                            }
                        }
                        if (wantu && (k < m - 1))
                        {
                            for (int i = 0; i < m; i++)
                            {
                                t = umatrix[i][k + 1];
                                umatrix[i][k + 1] = umatrix[i][k];
                                umatrix[i][k]     = t;
                            }
                        }
                        k++;
                    }
                    iter = 0;
                    p--;
                }
                break;
                }
            }
        }
コード例 #17
0
        /// <inheritdoc/>
        public int Classify(IMLData input)
        {
            IMLData output = Compute(input);

            return(EngineArray.MaxIndex(output));
        }
コード例 #18
0
        /// <summary>
        /// Construct a network analyze class. Analyze the specified network.
        /// </summary>
        ///
        /// <param name="network">The network to analyze.</param>
        public AnalyzeNetwork(BasicNetwork network)
        {
            int            assignDisabled = 0;
            int            assignedTotal  = 0;
            IList <Double> biasList       = new List <Double>();
            IList <Double> weightList     = new List <Double>();
            IList <Double> allList        = new List <Double>();

            for (int layerNumber = 0; layerNumber < network.LayerCount - 1; layerNumber++)
            {
                int fromCount     = network.GetLayerNeuronCount(layerNumber);
                int fromBiasCount = network
                                    .GetLayerTotalNeuronCount(layerNumber);
                int toCount = network.GetLayerNeuronCount(layerNumber + 1);

                // weights
                for (int fromNeuron = 0; fromNeuron < fromCount; fromNeuron++)
                {
                    for (int toNeuron = 0; toNeuron < toCount; toNeuron++)
                    {
                        double v = network.GetWeight(layerNumber, fromNeuron,
                                                     toNeuron);

                        if (network.Structure.ConnectionLimited)
                        {
                            if (Math.Abs(v) < network.Structure.ConnectionLimit)
                            {
                                assignDisabled++;
                            }
                        }

                        weightList.Add(v);
                        allList.Add(v);
                        assignedTotal++;
                    }
                }

                // bias
                if (fromCount != fromBiasCount)
                {
                    int biasNeuron = fromCount;
                    for (int toNeuron = 0; toNeuron < toCount; toNeuron++)
                    {
                        double v = network.GetWeight(layerNumber, biasNeuron,
                                                     toNeuron);
                        if (network.Structure.ConnectionLimited)
                        {
                            if (Math.Abs(v) < network.Structure.ConnectionLimit)
                            {
                                assignDisabled++;
                            }
                        }

                        biasList.Add(v);
                        allList.Add(v);
                        assignedTotal++;
                    }
                }
            }

            _disabledConnections = assignDisabled;
            _totalConnections    = assignedTotal;
            _weights             = new NumericRange(weightList);
            _bias           = new NumericRange(biasList);
            _weightsAndBias = new NumericRange(allList);
            _weightValues   = EngineArray.ListToDouble(weightList);
            _allValues      = EngineArray.ListToDouble(allList);
            _biasValues     = EngineArray.ListToDouble(biasList);
        }
コード例 #19
0
 /// <inheritdoc/>
 public void Clear()
 {
     EngineArray.Fill(_gradients, 0);
     _hessianMatrix.Clear();
 }
コード例 #20
0
        /// <summary>
        /// Compute the output from this network.
        /// </summary>
        ///
        /// <param name="input">The input to the network.</param>
        /// <returns>The output from the network.</returns>
        public override sealed IMLData Compute(IMLData input)
        {
            var xout = new double[OutputCount];

            double psum = 0.0d;

            int r = -1;

            foreach (IMLDataPair pair  in  _samples)
            {
                r++;

                if (r == Exclude)
                {
                    continue;
                }

                double dist = 0.0d;
                for (int i = 0; i < InputCount; i++)
                {
                    double diff = input[i] - pair.Input[i];
                    diff /= _sigma[i];
                    dist += diff * diff;
                }

                if (Kernel == PNNKernelType.Gaussian)
                {
                    dist = Math.Exp(-dist);
                }
                else if (Kernel == PNNKernelType.Reciprocal)
                {
                    dist = 1.0d / (1.0d + dist);
                }

                if (dist < 1.0e-40d)
                {
                    dist = 1.0e-40d;
                }

                if (OutputMode == PNNOutputMode.Classification)
                {
                    var pop = (int)pair.Ideal[0];
                    xout[pop] += dist;
                }
                else if (OutputMode == PNNOutputMode.Unsupervised)
                {
                    for (int i = 0; i < InputCount; i++)
                    {
                        xout[i] += dist * pair.Input[i];
                    }
                    psum += dist;
                }
                else if (OutputMode == PNNOutputMode.Regression)
                {
                    for (int i = 0; i < OutputCount; i++)
                    {
                        xout[i] += dist * pair.Ideal[i];
                    }

                    psum += dist;
                }
            }

            if (OutputMode == PNNOutputMode.Classification)
            {
                psum = 0.0d;
                for (int i = 0; i < OutputCount; i++)
                {
                    if (_priors[i] >= 0.0d)
                    {
                        xout[i] *= _priors[i] / _countPer[i];
                    }
                    psum += xout[i];
                }

                if (psum < 1.0e-40d)
                {
                    psum = 1.0e-40d;
                }

                for (int i = 0; i < OutputCount; i++)
                {
                    xout[i] /= psum;
                }

                IMLData result = new BasicMLData(1);
                result[0] = EngineArray.MaxIndex(xout);
                return(result);
            }
            else if (OutputMode == PNNOutputMode.Unsupervised)
            {
                for (int i = 0; i < InputCount; i++)
                {
                    xout[i] /= psum;
                }
            }
            else if (OutputMode == PNNOutputMode.Regression)
            {
                for (int i = 0; i < OutputCount; i++)
                {
                    xout[i] /= psum;
                }
            }

            return(new BasicMLData(xout));
        }
コード例 #21
0
        /// <summary>
        /// Read an object.
        /// </summary>
        public Object Read(Stream mask0)
        {
            var ins0 = new EncogReadHelper(mask0);
            EncogFileSection section;
            var samples = new BasicMLDataSet();
            IDictionary <String, String> networkParams = null;
            PNNKernelType kernel      = default(PNNKernelType) /* was: null */;
            PNNOutputMode outmodel    = default(PNNOutputMode) /* was: null */;
            int           inputCount  = 0;
            int           outputCount = 0;
            double        error       = 0;

            double[] sigma = null;

            while ((section = ins0.ReadNextSection()) != null)
            {
                if (section.SectionName.Equals("PNN") &&
                    section.SubSectionName.Equals("PARAMS"))
                {
                    networkParams = section.ParseParams();
                }
                if (section.SectionName.Equals("PNN") &&
                    section.SubSectionName.Equals("NETWORK"))
                {
                    IDictionary <String, String> paras = section.ParseParams();
                    inputCount = EncogFileSection.ParseInt(paras,
                                                           PersistConst.InputCount);
                    outputCount = EncogFileSection.ParseInt(paras,
                                                            PersistConst.OutputCount);
                    kernel   = StringToKernel(paras[PersistConst.Kernel]);
                    outmodel = StringToOutputMode(paras[PropertyOutputMode]);
                    error    = EncogFileSection
                               .ParseDouble(paras, PersistConst.Error);
                    sigma = section.ParseDoubleArray(paras, PersistConst.Sigma);
                }
                if (section.SectionName.Equals("PNN") &&
                    section.SubSectionName.Equals("SAMPLES"))
                {
                    foreach (String line  in  section.Lines)
                    {
                        IList <String> cols = EncogFileSection
                                              .SplitColumns(line);
                        int index     = 0;
                        var inputData = new BasicMLData(inputCount);
                        for (int i = 0; i < inputCount; i++)
                        {
                            inputData[i] =
                                CSVFormat.EgFormat.Parse(cols[index++]);
                        }
                        var idealData = new BasicMLData(inputCount);

                        idealData[0] = CSVFormat.EgFormat.Parse(cols[index++]);

                        IMLDataPair pair = new BasicMLDataPair(inputData,
                                                               idealData);
                        samples.Add(pair);
                    }
                }
            }

            var result = new BasicPNN(kernel, outmodel, inputCount,
                                      outputCount);

            if (networkParams != null)
            {
                EngineArray.PutAll(networkParams, result.Properties);
            }
            result.Samples = samples;
            result.Error   = error;
            if (sigma != null)
            {
                EngineArray.ArrayCopy(sigma, result.Sigma);
            }

            return(result);
        }
コード例 #22
0
 /// <summary>
 ///     Perform a revert.
 /// </summary>
 /// <param name="revertedData">The source data to revert from.</param>
 public void PerformRevert(IDictionary <String, String> revertedData)
 {
     _data.Clear();
     EngineArray.PutAll(revertedData, _data);
 }
コード例 #23
0
 /// <summary>
 /// Copy weights and output to the network.
 /// </summary>
 ///
 /// <param name="target">The network to copy to.</param>
 public void CopyToNetwork(FlatNetwork target)
 {
     EngineArray.ArrayCopy(_weights, target.Weights);
     EngineArray.ArrayCopy(_output, target.LayerOutput);
 }
コード例 #24
0
        /// <summary>
        /// Perform one iteration.
        /// </summary>
        ///
        public override void Iteration()
        {
            if (_mustInit)
            {
                Init();
            }
            int numWeights = _weights.Length;

            // Storage space for previous iteration values.

            if (_restart)
            {
                // First time through, set initial values for SCG parameters.
                _lambda  = FirstLambda;
                _lambda2 = 0;
                _k       = 1;
                _success = true;
                _restart = false;
            }

            // If an error reduction is possible, calculate 2nd order info.
            if (_success)
            {
                // If the search direction is small, stop.
                _magP = EngineArray.VectorProduct(_p, _p);

                double sigma = FirstSigma
                               / Math.Sqrt(_magP);

                // In order to compute the new step, we need a new gradient.
                // First, save off the old data.
                EngineArray.ArrayCopy(Gradients, _oldGradient);
                EngineArray.ArrayCopy(_weights, _oldWeights);
                _oldError = Error;

                // Now we move to the new point in weight space.
                for (int i = 0; i < numWeights; ++i)
                {
                    _weights[i] += sigma * _p[i];
                }

                EngineArray.ArrayCopy(_weights, Network.Weights);

                // And compute the new gradient.
                CalculateGradients();

                // Now we have the new gradient, and we continue the step
                // computation.
                _delta = 0;
                for (int i = 0; i < numWeights; ++i)
                {
                    double step = (Gradients[i] - _oldGradient[i])
                                  / sigma;
                    _delta += _p[i] * step;
                }
            }

            // Scale delta.
            _delta += (_lambda - _lambda2) * _magP;

            // If delta <= 0, make Hessian positive definite.
            if (_delta <= 0)
            {
                _lambda2 = 2 * (_lambda - _delta / _magP);
                _delta   = _lambda * _magP - _delta;
                _lambda  = _lambda2;
            }

            // Calculate step size.
            double mu    = EngineArray.VectorProduct(_p, _r);
            double alpha = mu / _delta;

            // Calculate the comparison parameter.
            // We must compute a new gradient, but this time we do not
            // want to keep the old values. They were useful only for
            // approximating the Hessian.
            for (int i = 0; i < numWeights; ++i)
            {
                _weights[i] = _oldWeights[i] + alpha * _p[i];
            }

            EngineArray.ArrayCopy(_weights, Network.Weights);

            CalculateGradients();

            double gdelta = 2 * _delta * (_oldError - Error)
                            / (mu * mu);

            // If gdelta >= 0, a successful reduction in error is possible.
            if (gdelta >= 0)
            {
                // Product of r(k+1) by r(k)
                double rsum = 0;

                // Now r = r(k+1).
                for (int i = 0; i < numWeights; ++i)
                {
                    double tmp = -Gradients[i];
                    rsum += tmp * _r[i];
                    _r[i] = tmp;
                }
                _lambda2 = 0;
                _success = true;

                // Do we need to restart?
                if (_k >= numWeights)
                {
                    _restart = true;
                    EngineArray.ArrayCopy(_r, _p);
                }
                else
                {
                    // Compute new conjugate direction.
                    double beta = (EngineArray.VectorProduct(_r, _r) - rsum)
                                  / mu;

                    // Update direction vector.
                    for (int i = 0; i < numWeights; ++i)
                    {
                        _p[i] = _r[i] + beta * _p[i];
                    }

                    _restart = false;
                }

                if (gdelta >= 0.75D)
                {
                    _lambda *= 0.25D;
                }
            }
            else
            {
                // A reduction in error was not possible.
                // under_tolerance = false;

                // Go back to w(k) since w(k) + alpha*p(k) is not better.
                EngineArray.ArrayCopy(_oldWeights, _weights);
                CurrentError = _oldError;
                _lambda2     = _lambda;
                _success     = false;
            }

            if (gdelta < 0.25D)
            {
                _lambda += _delta * (1 - gdelta) / _magP;
            }

            _lambda = BoundNumbers.Bound(_lambda);

            ++_k;

            EngineArray.ArrayCopy(_weights, Network.Weights);
        }
コード例 #25
0
ファイル: PersistHMM.cs プロジェクト: christafford/Clavocline
        /// <inheritdoc/>
        public Object Read(Stream istream)
        {
            int states = 0;

            int[]    items;
            double[] pi = null;
            Matrix   transitionProbability             = null;
            IDictionary <String, String> properties    = null;
            IList <IStateDistribution>   distributions = new List <IStateDistribution>();

            EncogReadHelper  reader = new EncogReadHelper(istream);
            EncogFileSection section;

            while ((section = reader.ReadNextSection()) != null)
            {
                if (section.SectionName.Equals("HMM") &&
                    section.SubSectionName.Equals("PARAMS"))
                {
                    properties = section.ParseParams();
                }
                if (section.SectionName.Equals("HMM") &&
                    section.SubSectionName.Equals("CONFIG"))
                {
                    IDictionary <String, String> p = section.ParseParams();

                    states = EncogFileSection.ParseInt(p, HiddenMarkovModel.TAG_STATES);

                    if (p.ContainsKey(HiddenMarkovModel.TAG_ITEMS))
                    {
                        items = EncogFileSection.ParseIntArray(p, HiddenMarkovModel.TAG_ITEMS);
                    }
                    pi = section.ParseDoubleArray(p, HiddenMarkovModel.TAG_PI);
                    transitionProbability = EncogFileSection.ParseMatrix(p, HiddenMarkovModel.TAG_TRANSITION);
                }
                else if (section.SectionName.Equals("HMM") &&
                         section.SubSectionName.StartsWith("DISTRIBUTION-"))
                {
                    IDictionary <String, String> p = section.ParseParams();
                    String t = p[HiddenMarkovModel.TAG_DIST_TYPE];
                    if ("ContinousDistribution".Equals(t))
                    {
                        double[] mean = section.ParseDoubleArray(p, HiddenMarkovModel.TAG_MEAN);
                        Matrix   cova = EncogFileSection.ParseMatrix(p, HiddenMarkovModel.TAG_COVARIANCE);
                        ContinousDistribution dist = new ContinousDistribution(mean, cova.Data);
                        distributions.Add(dist);
                    }
                    else if ("DiscreteDistribution".Equals(t))
                    {
                        Matrix prob = EncogFileSection.ParseMatrix(p, HiddenMarkovModel.TAG_PROBABILITIES);
                        DiscreteDistribution dist = new DiscreteDistribution(prob.Data);
                        distributions.Add(dist);
                    }
                }
            }

            HiddenMarkovModel result = new HiddenMarkovModel(states);

            EngineArray.PutAll(properties, result.Properties);
            result.TransitionProbability = transitionProbability.Data;
            result.Pi = pi;
            int index = 0;

            foreach (IStateDistribution dist in distributions)
            {
                result.StateDistributions[index++] = dist;
            }


            return(result);
        }
コード例 #26
0
 /// <summary>
 /// Clear to zero.
 /// </summary>
 public void Clear()
 {
     EngineArray.Fill(_data, 0);
 }
コード例 #27
0
        /// <summary>
        /// Determine the winner for the specified input. This is the number of the
        /// winning neuron.
        /// </summary>
        ///
        /// <param name="input">The input patter to present to the neural network.</param>
        /// <returns>The winning neuron.</returns>
        public int Winner(IMLData input)
        {
            IMLData output = Compute(input);

            return(EngineArray.MaxIndex(output));
        }
コード例 #28
0
 public void CopyTo(double[] target, int targetIndex, int count)
 {
     EngineArray.ArrayCopy(_data, 0, target, targetIndex, count);
 }
コード例 #29
0
 /// <summary>
 /// dst = src
 ///
 /// Copy a vector.
 /// </summary>
 /// <param name="dst">an array of doubles</param>
 /// <param name="src">an array of doubles</param>
 public void Copy(double[] dst, double[] src)
 {
     EngineArray.ArrayCopy(src, dst);
 }
コード例 #30
0
        /// <summary>
        /// Perform one iteration.
        /// </summary>
        ///
        public override void Iteration()
        {
            if (shouldInit)
            {
                Init();
            }

            int numWeights = this.weights.Length;

            // Storage space for previous iteration values.

            if (this.restart)
            {
                // First time through, set initial values for SCG parameters.
                this.lambda  = TrainFlatNetworkSCG.FIRST_LAMBDA;
                this.lambda2 = 0;
                this.k       = 1;
                this.success = true;
                this.restart = false;
            }

            // If an error reduction is possible, calculate 2nd order info.
            if (this.success)
            {
                // If the search direction is small, stop.
                this.magP = EngineArray.VectorProduct(this.p, this.p);

                double sigma = TrainFlatNetworkSCG.FIRST_SIGMA
                               / Math.Sqrt(this.magP);

                // In order to compute the new step, we need a new gradient.
                // First, save off the old data.
                EngineArray.ArrayCopy(this.gradients, this.oldGradient);
                EngineArray.ArrayCopy(this.weights, this.oldWeights);
                this.oldError = Error;

                // Now we move to the new point in weight space.
                for (int i = 0; i < numWeights; ++i)
                {
                    this.weights[i] += sigma * this.p[i];
                }

                EngineArray.ArrayCopy(this.weights, this.network.Weights);

                // And compute the new gradient.
                CalculateGradients();

                // Now we have the new gradient, and we continue the step
                // computation.
                this.delta = 0;
                for (int i_0 = 0; i_0 < numWeights; ++i_0)
                {
                    double step = (this.gradients[i_0] - this.oldGradient[i_0])
                                  / sigma;
                    this.delta += this.p[i_0] * step;
                }
            }

            // Scale delta.
            this.delta += (this.lambda - this.lambda2) * this.magP;

            // If delta <= 0, make Hessian positive definite.
            if (this.delta <= 0)
            {
                this.lambda2 = 2 * (this.lambda - this.delta / this.magP);
                this.delta   = this.lambda * this.magP - this.delta;
                this.lambda  = this.lambda2;
            }

            // Calculate step size.
            double mu    = EngineArray.VectorProduct(this.p, this.r);
            double alpha = mu / this.delta;

            // Calculate the comparison parameter.
            // We must compute a new gradient, but this time we do not
            // want to keep the old values. They were useful only for
            // approximating the Hessian.
            for (int i_1 = 0; i_1 < numWeights; ++i_1)
            {
                this.weights[i_1] = this.oldWeights[i_1] + alpha * this.p[i_1];
            }

            EngineArray.ArrayCopy(this.weights, this.network.Weights);

            CalculateGradients();

            double gdelta = 2 * this.delta * (this.oldError - Error)
                            / (mu * mu);

            // If gdelta >= 0, a successful reduction in error is possible.
            if (gdelta >= 0)
            {
                // Product of r(k+1) by r(k)
                double rsum = 0;

                // Now r = r(k+1).
                for (int i_2 = 0; i_2 < numWeights; ++i_2)
                {
                    double tmp = -this.gradients[i_2];
                    rsum       += tmp * this.r[i_2];
                    this.r[i_2] = tmp;
                }
                this.lambda2 = 0;
                this.success = true;

                // Do we need to restart?
                if (this.k >= numWeights)
                {
                    this.restart = true;
                    EngineArray.ArrayCopy(this.r, this.p);
                }
                else
                {
                    // Compute new conjugate direction.
                    double beta = (EngineArray.VectorProduct(this.r, this.r) - rsum)
                                  / mu;

                    // Update direction vector.
                    for (int i_3 = 0; i_3 < numWeights; ++i_3)
                    {
                        this.p[i_3] = this.r[i_3] + beta * this.p[i_3];
                    }

                    this.restart = false;
                }

                if (gdelta >= 0.75D)
                {
                    this.lambda *= 0.25D;
                }
            }
            else
            {
                // A reduction in error was not possible.
                // under_tolerance = false;

                // Go back to w(k) since w(k) + alpha*p(k) is not better.
                EngineArray.ArrayCopy(this.oldWeights, this.weights);
                this.currentError = this.oldError;
                this.lambda2      = this.lambda;
                this.success      = false;
            }

            if (gdelta < 0.25D)
            {
                this.lambda += this.delta * (1 - gdelta) / this.magP;
            }

            this.lambda = BoundNumbers.Bound(this.lambda);

            ++this.k;

            EngineArray.ArrayCopy(this.weights, this.network.Weights);
        }