/// <summary>
        /// Get emotion features using distances and wrinkles
        /// </summary>
        /// <param name="ImageMat">Image on which distances need to calculate</param>
        /// <param name="faces">Rectangles of faces</param>
        /// <param name="index">Index of images in case of multiple images</param>
        /// <returns>Returns the list of distances</returns>
        public EmotionTrainingMLModel FindEmotions(Mat ImageMat, List <Rectangle> faces, int index)
        {
            EmotionTrainingMLModel dataModel = new EmotionTrainingMLModel();

            if (faces.Count > 0)
            {
                Mat shortImage = new Mat(ImageMat, faces[0]);
                CvInvoke.Resize(shortImage, shortImage, new Size(320, 240), 0, 0, Inter.Linear);

                faces = new List <Rectangle>();
                faces.Add(new Rectangle(0, 0, shortImage.Width, shortImage.Height));

                List <double> distances = findDistances(shortImage, faces, index);

                double noseWrinkles = findWrinkles(shortImage, onNose);

                double betweenEyesWrinkles = findWrinkles(shortImage, betweenEyes);

                dataModel = new EmotionTrainingMLModel();
                for (int i = 0; i < 14; i++)
                {
                    var          value        = distances.ElementAt(i);
                    PropertyInfo propertyInfo = dataModel.GetType().GetProperty(listOfDistances[i]);
                    propertyInfo.SetValue(dataModel, value, null);
                }
                dataModel.noseWrinkles        = noseWrinkles;
                dataModel.betweenEyesWrinkles = betweenEyesWrinkles;
                dataModel.Label = "";
                //emotions= EDRMLMain.getInstance().getCalculatedEmotions(dataModel);
            }
            return(dataModel);
        }
コード例 #2
0
        /// <summary>
        /// Train system using multiple files and then call ML algorithm to train
        /// </summary>
        /// <param name="files">List of file names to train machiene</param>
        /// <returns>Returns a model of ML layer</returns>

        public List <EmotionTrainingMLModel> TrainSystemForEmotion(string[] files)
        {
            using (Logger logger = new Logger())
            {
                List <EmotionTrainingMLModel> emotionList = new List <EmotionTrainingMLModel>();
                int index = 0;
                foreach (string file in files)
                {
                    logger.LogIntoFile(Log.logType.INFO, (string)ConstantsLoader.getInstance().getValue(EnumConstant.emotionTrainingMessage));
                    Mat image = new Mat(file);
                    List <Rectangle> faces = new List <Rectangle>();
                    faces = FDIPMAin.DetectFace(image);

                    if (faces.Count > 0)
                    {
                        EDRFeatureExtraction featureExtracter = new EDRFeatureExtraction();

                        Mat shortImage = new Mat(image, faces[0]);
                        CvInvoke.Resize(shortImage, shortImage, new Size(320, 240), 0, 0, Inter.Linear);

                        faces = new List <Rectangle>();
                        faces.Add(new Rectangle(0, 0, shortImage.Width, shortImage.Height));
                        List <double> distances = featureExtracter.findDistances(shortImage, faces, index);

                        EmotionTrainingMLModel dataModel = new EmotionTrainingMLModel();
                        for (int i = 0; i < 14; i++)
                        {
                            var          value        = distances.ElementAt(i);
                            PropertyInfo propertyInfo = dataModel.GetType().GetProperty(listOfDistances[i]);
                            propertyInfo.SetValue(dataModel, value, null);
                        }
                        dataModel.noseWrinkles        = featureExtracter.findWrinkles(shortImage, featureExtracter.getOnNose());
                        dataModel.betweenEyesWrinkles = featureExtracter.findWrinkles(shortImage, featureExtracter.getBetweenEyes());
                        dataModel.Label = Path.GetFileName(Path.GetDirectoryName(file));
                        emotionList.Add(dataModel);
                    }
                    index++;
                }
                return(emotionList);
            }
        }