/* these next two functions implement elligator squared - http://eprint.iacr.org/2014/043 */ /* Elliptic curve point E in format (0x04,x,y} is converted to form {0x0-,u,v} */ /* Note that u and v are indistinguisible from random strings */ public static int ENCODING(RAND rng, sbyte[] E) { int rn, m, su, sv; sbyte[] T = new sbyte[EFS]; for (int i = 0; i < EFS; i++) { T[i] = E[i + 1]; } BIG u = BIG.fromBytes(T); for (int i = 0; i < EFS; i++) { T[i] = E[i + EFS + 1]; } BIG v = BIG.fromBytes(T); ECP P = new ECP(u, v); if (P.is_infinity()) { return(INVALID_POINT); } BIG p = new BIG(ROM.Modulus); u = BIG.randomnum(p, rng); su = rng.Byte; //if (su<0) su=-su; su %= 2; ECP W = map(u, su); P.sub(W); sv = P.S; rn = unmap(v, P); m = rng.Byte; //if (m<0) m=-m; m %= rn; v.inc(m + 1); E[0] = (sbyte)(su + 2 * sv); u.toBytes(T); for (int i = 0; i < EFS; i++) { E[i + 1] = T[i]; } v.toBytes(T); for (int i = 0; i < EFS; i++) { E[i + EFS + 1] = T[i]; } return(0); }
/* Extract PIN from TOKEN for identity CID */ public static int EXTRACT_PIN(sbyte[] CID, int pin, sbyte[] TOKEN) { ECP P = ECP.fromBytes(TOKEN); if (P.is_infinity()) { return(INVALID_POINT); } sbyte[] h = hashit(0, CID); ECP R = mapit(h); pin %= MAXPIN; R = R.pinmul(pin, PBLEN); P.sub(R); P.toBytes(TOKEN); return(0); }
/* return e.this */ public ECP mul(BIG e) { if (e.iszilch() || is_infinity()) { return(new ECP()); } ECP P = new ECP(); if (ROM.CURVETYPE == ROM.MONTGOMERY) { /* use Ladder */ int nb, i, b; ECP D = new ECP(); ECP R0 = new ECP(); R0.copy(this); ECP R1 = new ECP(); R1.copy(this); R1.dbl(); D.copy(this); D.affine(); nb = e.nbits(); for (i = nb - 2; i >= 0; i--) { b = e.bit(i); P.copy(R1); P.dadd(R0, D); R0.cswap(R1, b); R1.copy(P); R0.dbl(); R0.cswap(R1, b); } P.copy(R0); } else { // fixed size windows int i, b, nb, m, s, ns; BIG mt = new BIG(); BIG t = new BIG(); ECP Q = new ECP(); ECP C = new ECP(); ECP[] W = new ECP[8]; sbyte[] w = new sbyte[1 + (ROM.NLEN * ROM.BASEBITS + 3) / 4]; affine(); // precompute table Q.copy(this); Q.dbl(); W[0] = new ECP(); W[0].copy(this); for (i = 1; i < 8; i++) { W[i] = new ECP(); W[i].copy(W[i - 1]); W[i].add(Q); } // convert the table to affine if (ROM.CURVETYPE == ROM.WEIERSTRASS) { multiaffine(8, W); } // make exponent odd - add 2P if even, P if odd t.copy(e); s = t.parity(); t.inc(1); t.norm(); ns = t.parity(); mt.copy(t); mt.inc(1); mt.norm(); t.cmove(mt, s); Q.cmove(this, ns); C.copy(Q); nb = 1 + (t.nbits() + 3) / 4; // convert exponent to signed 4-bit window for (i = 0; i < nb; i++) { w[i] = (sbyte)(t.lastbits(5) - 16); t.dec(w[i]); t.norm(); t.fshr(4); } w[nb] = (sbyte)t.lastbits(5); P.copy(W[(w[nb] - 1) / 2]); for (i = nb - 1; i >= 0; i--) { Q.select(W, w[i]); P.dbl(); P.dbl(); P.dbl(); P.dbl(); P.add(Q); } P.sub(C); // apply correction } P.affine(); return(P); }
/* Return e.this+f.Q */ public ECP mul2(BIG e, ECP Q, BIG f) { BIG te = new BIG(); BIG tf = new BIG(); BIG mt = new BIG(); ECP S = new ECP(); ECP T = new ECP(); ECP C = new ECP(); ECP[] W = new ECP[8]; sbyte[] w = new sbyte[1 + (ROM.NLEN * ROM.BASEBITS + 1) / 2]; int i, s, ns, nb; sbyte a, b; affine(); Q.affine(); te.copy(e); tf.copy(f); // precompute table W[1] = new ECP(); W[1].copy(this); W[1].sub(Q); W[2] = new ECP(); W[2].copy(this); W[2].add(Q); S.copy(Q); S.dbl(); W[0] = new ECP(); W[0].copy(W[1]); W[0].sub(S); W[3] = new ECP(); W[3].copy(W[2]); W[3].add(S); T.copy(this); T.dbl(); W[5] = new ECP(); W[5].copy(W[1]); W[5].add(T); W[6] = new ECP(); W[6].copy(W[2]); W[6].add(T); W[4] = new ECP(); W[4].copy(W[5]); W[4].sub(S); W[7] = new ECP(); W[7].copy(W[6]); W[7].add(S); // convert the table to affine if (ROM.CURVETYPE == ROM.WEIERSTRASS) { multiaffine(8, W); } // if multiplier is odd, add 2, else add 1 to multiplier, and add 2P or P to correction s = te.parity(); te.inc(1); te.norm(); ns = te.parity(); mt.copy(te); mt.inc(1); mt.norm(); te.cmove(mt, s); T.cmove(this, ns); C.copy(T); s = tf.parity(); tf.inc(1); tf.norm(); ns = tf.parity(); mt.copy(tf); mt.inc(1); mt.norm(); tf.cmove(mt, s); S.cmove(Q, ns); C.add(S); mt.copy(te); mt.add(tf); mt.norm(); nb = 1 + (mt.nbits() + 1) / 2; // convert exponent to signed 2-bit window for (i = 0; i < nb; i++) { a = (sbyte)(te.lastbits(3) - 4); te.dec(a); te.norm(); te.fshr(2); b = (sbyte)(tf.lastbits(3) - 4); tf.dec(b); tf.norm(); tf.fshr(2); w[i] = (sbyte)(4 * a + b); } w[nb] = (sbyte)(4 * te.lastbits(3) + tf.lastbits(3)); S.copy(W[(w[nb] - 1) / 2]); for (i = nb - 1; i >= 0; i--) { T.select(W, w[i]); S.dbl(); S.dbl(); S.add(T); } S.sub(C); // apply correction S.affine(); return(S); }