public void DirectedAndWeightedGraphShortestPathsCheck() { var vertices = new int[] { 1, 2, 3, 4, 5, 6, 7, 8, 9 }; var graph = new DirectedWeightedALGraph <int, int>(); graph.AddVertices(vertices); // Graph is: // 1 -> 3, 4 // 1 <- 2 // 2 -> 1, 5 // 2 <- 3, 5, 6 // 3 -> 2, 6 // 3 <- 1, 4 // 4 -> 3, 6 // 4 <- 1, 7 // 5 -> 2, 7, 8 // 5 <- 2, 8 // 6 -> 2 // 6 <- 3, 4 // 7 -> 4 // 7 <- 5, 8 // 8 -> 5, 7 // 8 <- 5 // 9 -> // 9 <- // With each edge having a weight of the absolute value of the difference of the vertices graph.AddEdge(1, 3, 2); graph.AddEdge(1, 4, 3); graph.AddEdge(2, 1, 1); graph.AddEdge(2, 5, 3); graph.AddEdge(3, 2, 1); graph.AddEdge(3, 6, 3); graph.AddEdge(4, 3, 1); graph.AddEdge(4, 6, 2); graph.AddEdge(5, 2, 3); graph.AddEdge(5, 7, 2); graph.AddEdge(5, 8, 3); graph.AddEdge(6, 2, 4); graph.AddEdge(7, 4, 3); graph.AddEdge(8, 5, 3); graph.AddEdge(8, 7, 1); // Expected shortest paths for vertex 1 // 1 to 2 : 1 -> 3 -> 2 // 1 to 3 : 1 -> 3 // 1 to 4 : 1 -> 4 // 1 to 5 : 1 -> 3 -> 2 -> 5 // 1 to 6 : 1 -> 3 -> 6 // 1 to 7 : 1 -> 3 -> 2 -> 5 -> 7 // 1 to 8 : 1 -> 3 -> 2 -> 5 -> 8 // 1 to 9 : no path var expectedPaths = new int[7][] { new int[] { 1, 3, 2 }, new int[] { 1, 3 }, new int[] { 1, 4 }, new int[] { 1, 3, 2, 5 }, new int[] { 1, 3, 6 }, new int[] { 1, 3, 2, 5, 7 }, new int[] { 1, 3, 2, 5, 8 } }; var expectedEdgesWeights = new int[7][] { new int[] { 2, 1 }, new int[] { 2 }, new int[] { 3 }, new int[] { 2, 1, 3 }, new int[] { 2, 3 }, new int[] { 2, 1, 3, 2 }, new int[] { 2, 1, 3, 3 } }; var paths = graph.BellmanFordShortestPaths(1); for (int i = 0; i < 7; i++) { var curPath = paths.VerticesPathTo(i + 2); for (int j = 0; j < curPath.Count; j++) { if (expectedPaths[i][j] != curPath[j]) { Assert.Fail(); } } var curEdgesPath = paths.EdgesPathTo(i + 2); for (int j = 0; j < curEdgesPath.Count; j++) { if (expectedEdgesWeights[i][j] != curEdgesPath[j].Weight) { Assert.Fail(); } } } Assert.IsFalse(paths.HasPathTo(9)); // Expected shortest paths for vertex 8 // 8 to 1 : 8 -> 5 -> 2 -> 1 // 8 to 2 : 8 -> 5 -> 2 // 8 to 3 : 8 -> 7 -> 4 -> 3 // 8 to 4 : 8 -> 7 -> 4 // 8 to 5 : 8 -> 5 // 8 to 6 : 8 -> 7 -> 4 -> 6 // 8 to 7 : 8 -> 7 // 8 to 9 : no path expectedPaths = new int[7][] { new int[] { 8, 5, 2, 1 }, new int[] { 8, 5, 2 }, new int[] { 8, 7, 4, 3 }, new int[] { 8, 7, 4 }, new int[] { 8, 5 }, new int[] { 8, 7, 4, 6 }, new int[] { 8, 7 } }; expectedEdgesWeights = new int[7][] { new int[] { 3, 3, 1 }, new int[] { 3, 3 }, new int[] { 1, 3, 1 }, new int[] { 1, 3 }, new int[] { 3 }, new int[] { 1, 3, 2 }, new int[] { 1 } }; paths = graph.BellmanFordShortestPaths(8); for (int i = 0; i < 7; i++) { var curPath = paths.VerticesPathTo(i + 1); for (int j = 0; j < curPath.Count; j++) { if (expectedPaths[i][j] != curPath[j]) { Assert.Fail(); } } var curEdgesPath = paths.EdgesPathTo(i + 1); for (int j = 0; j < curEdgesPath.Count; j++) { if (expectedEdgesWeights[i][j] != curEdgesPath[j].Weight) { Assert.Fail(); } } } Assert.IsFalse(paths.HasPathTo(9)); }