public virtual double evaluate(RecommenderBuilder recommenderBuilder, DataModelBuilder dataModelBuilder, DataModel dataModel, double trainingPercentage, double evaluationPercentage) { log.info("Beginning evaluation using {} of {}", new object[] { trainingPercentage, dataModel }); int num = dataModel.getNumUsers(); FastByIDMap <PreferenceArray> trainingPrefs = new FastByIDMap <PreferenceArray>(1 + ((int)(evaluationPercentage * num))); FastByIDMap <PreferenceArray> testPrefs = new FastByIDMap <PreferenceArray>(1 + ((int)(evaluationPercentage * num))); IEnumerator <long> enumerator = dataModel.getUserIDs(); while (enumerator.MoveNext()) { long current = enumerator.Current; if (this.random.nextDouble() < evaluationPercentage) { this.splitOneUsersPrefs(trainingPercentage, trainingPrefs, testPrefs, current, dataModel); } } DataModel model = (dataModelBuilder == null) ? new GenericDataModel(trainingPrefs) : dataModelBuilder.buildDataModel(trainingPrefs); Recommender recommender = recommenderBuilder.buildRecommender(model); double num3 = this.getEvaluation(testPrefs, recommender); log.info("Evaluation result: {}", new object[] { num3 }); return(num3); }
public IRStatistics evaluate(RecommenderBuilder recommenderBuilder, DataModelBuilder dataModelBuilder, DataModel dataModel, IDRescorer rescorer, int at, double relevanceThreshold, double evaluationPercentage) { int num = dataModel.getNumItems(); RunningAverage average = new FullRunningAverage(); RunningAverage average2 = new FullRunningAverage(); RunningAverage average3 = new FullRunningAverage(); RunningAverage average4 = new FullRunningAverage(); int num2 = 0; int num3 = 0; IEnumerator <long> enumerator = dataModel.getUserIDs(); while (enumerator.MoveNext()) { long current = enumerator.Current; if (this.random.nextDouble() < evaluationPercentage) { Stopwatch stopwatch = new Stopwatch(); stopwatch.Start(); PreferenceArray prefs = dataModel.getPreferencesFromUser(current); double num5 = double.IsNaN(relevanceThreshold) ? computeThreshold(prefs) : relevanceThreshold; FastIDSet relevantItemIDs = this.dataSplitter.getRelevantItemsIDs(current, at, num5, dataModel); int num6 = relevantItemIDs.size(); if (num6 > 0) { FastByIDMap <PreferenceArray> trainingUsers = new FastByIDMap <PreferenceArray>(dataModel.getNumUsers()); IEnumerator <long> enumerator2 = dataModel.getUserIDs(); while (enumerator2.MoveNext()) { this.dataSplitter.processOtherUser(current, relevantItemIDs, trainingUsers, enumerator2.Current, dataModel); } DataModel model = (dataModelBuilder == null) ? new GenericDataModel(trainingUsers) : dataModelBuilder.buildDataModel(trainingUsers); try { model.getPreferencesFromUser(current); } catch (NoSuchUserException) { continue; } int num7 = num6 + model.getItemIDsFromUser(current).size(); if (num7 >= (2 * at)) { Recommender recommender = recommenderBuilder.buildRecommender(model); int num8 = 0; List <RecommendedItem> list = recommender.recommend(current, at, rescorer); foreach (RecommendedItem item in list) { if (relevantItemIDs.contains(item.getItemID())) { num8++; } } int count = list.Count; if (count > 0) { average.addDatum(((double)num8) / ((double)count)); } average2.addDatum(((double)num8) / ((double)num6)); if (num6 < num7) { average3.addDatum(((double)(count - num8)) / ((double)(num - num6))); } double num10 = 0.0; double num11 = 0.0; for (int i = 0; i < count; i++) { RecommendedItem item2 = list[i]; double num13 = 1.0 / log2(i + 2.0); if (relevantItemIDs.contains(item2.getItemID())) { num10 += num13; } if (i < num6) { num11 += num13; } } if (num11 > 0.0) { average4.addDatum(num10 / num11); } num2++; if (count > 0) { num3++; } stopwatch.Stop(); log.info("Evaluated with user {} in {}ms", new object[] { current, stopwatch.ElapsedMilliseconds }); log.info("Precision/recall/fall-out/nDCG/reach: {} / {} / {} / {} / {}", new object[] { average.getAverage(), average2.getAverage(), average3.getAverage(), average4.getAverage(), ((double)num3) / ((double)num2) }); } } } } return(new IRStatisticsImpl(average.getAverage(), average2.getAverage(), average3.getAverage(), average4.getAverage(), ((double)num3) / ((double)num2))); }