コード例 #1
0
        /**
         * <p>
         * Creates a randomly generated set of orthonormal vectors.  At most it can generate the same
         * number of vectors as the dimension of the vectors.
         * </p>
         *
         * <p>
         * This is done by creatingJava.Util.Random vectors then ensuring that they are orthogonal
         * to all the ones previously created with reflectors.
         * </p>
         *
         * <p>
         * NOTE: This employs a brute force O(N<sup>3</sup>) algorithm.
         * </p>
         *
         * @param dimen dimension of the space which the vectors will span.
         * @param numVectors How many vectors it should generate.
         * @param rand Used to createJava.Util.Random vectors.
         * @return Array of NJava.Util.Random orthogonal vectors of unit Count().
         */
        // is there a faster algorithm out there? This one is a bit sluggish
        public static DMatrixRMaj[] span(int dimen, int numVectors, Java.Util.Random rand)
        {
            if (dimen < numVectors)
            {
                throw new ArgumentException("The number of vectors must be less than or equal to the dimension");
            }

            DMatrixRMaj[] u = new DMatrixRMaj[numVectors];

            u[0] = RandomMatrices_DDRM.rectangle(dimen, 1, -1, 1, rand);
            NormOps_DDRM.normalizeF(u[0]);

            for (int i = 1; i < numVectors; i++)
            {
                //            System.out.println(" i = "+i);
                DMatrixRMaj a = new DMatrixRMaj(dimen, 1);
                DMatrixRMaj r = RandomMatrices_DDRM.rectangle(dimen, 1, -1, 1, rand);

                for (int j = 0; j < i; j++)
                {
                    // find a vector that is normal to vector j
                    // u[i] = (1/2)*(r + Q[j]*r)
                    a.setTo(r);
                    VectorVectorMult_DDRM.householder(-2.0, u[j], r, a);
                    CommonOps_DDRM.add(r, a, a);
                    CommonOps_DDRM.scale(0.5, a);

                    //                UtilEjml.print(a);

                    DMatrixRMaj t = a;
                    a = r;
                    r = t;

                    // normalize it so it doesn't get too small
                    double val = NormOps_DDRM.normF(r);
                    if (val == 0 || Double.IsNaN(val) || Double.IsInfinity(val))
                    {
                        throw new SystemException("Failed sanity check");
                    }
                    CommonOps_DDRM.divide(r, val);
                }

                u[i] = r;
            }

            return(u);
        }
コード例 #2
0
        /**
         * Creates aJava.Util.Random vector that is inside the specified span.
         *
         * @param span The span theJava.Util.Random vector belongs in.
         * @param rand RNG
         * @return AJava.Util.Random vector within the specified span.
         */
        public static DMatrixRMaj insideSpan(DMatrixRMaj[] span, double min, double max, Java.Util.Random rand)
        {
            DMatrixRMaj A = new DMatrixRMaj(span.Count(), 1);

            DMatrixRMaj B = new DMatrixRMaj(span[0].NumElements, 1);

            for (int i = 0; i < span.Count(); i++)
            {
                B.setTo(span[i]);
                double val = rand.NextDouble() * (max - min) + min;
                CommonOps_DDRM.scale(val, B);

                CommonOps_DDRM.add(A, B, A);
            }

            return(A);
        }