コード例 #1
0
        public void findBarOne()
        {
            var imagecopy = image.Copy();
            var sobelX    = image.Sobel(1, 0, -1);

            showImage(sobelX, "sobelX");
            var sobelY = image.Sobel(0, 1, -1);

            showImage(sobelY, "sobleY");
            var gradient = sobelX - sobelY;

            CvInvoke.ConvertScaleAbs(gradient, gradient, 1, 0);
            showImage(gradient, "gradient");

            gradient._ThresholdBinary(new Gray(255), new Gray(255));
            showImage(gradient, "thresholdImage");
            var element    = CvInvoke.GetStructuringElement(Emgu.CV.CvEnum.ElementShape.Rectangle, new Size(3, 3), new Point(-1, -1));
            var diletImage = gradient.Dilate(2);

            showImage(diletImage, "diletImage");

            var closeImage = new Image <Gray, byte>(diletImage.Width, diletImage.Height);

            CvInvoke.MorphologyEx(diletImage, closeImage, Emgu.CV.CvEnum.MorphOp.Close, element, new Point(-1, -1), 2, Emgu.CV.CvEnum.BorderType.Default, CvInvoke.MorphologyDefaultBorderValue);
            showImage1(closeImage, "closeImage");
        }
コード例 #2
0
        static void Main(string[] args)
        {
            var img       = CvInvoke.Imread(Path.Join("resources", "ZeroSweater.jpg"));
            var gray      = new Mat(img.Rows, img.Cols, Emgu.CV.CvEnum.DepthType.Cv16S, 1);
            var gradX     = new Mat(gray.Rows, gray.Cols, Emgu.CV.CvEnum.DepthType.Cv16S, 1);
            var gradY     = new Mat(gray.Rows, gray.Cols, Emgu.CV.CvEnum.DepthType.Cv16S, 1);
            var absGradX  = new Mat(gray.Rows, gray.Cols, Emgu.CV.CvEnum.DepthType.Cv8U, 1);
            var absGradY  = new Mat(gray.Rows, gray.Cols, Emgu.CV.CvEnum.DepthType.Cv8U, 1);
            var sobelGrad = new Mat(gray.Rows, gray.Cols, Emgu.CV.CvEnum.DepthType.Cv8U, 1);

            CvInvoke.CvtColor(img, gray, Emgu.CV.CvEnum.ColorConversion.Bgr2Gray);
            CvInvoke.GaussianBlur(gray, gray, new System.Drawing.Size(3, 3), 0);

            CvInvoke.Sobel(gray, gradX, Emgu.CV.CvEnum.DepthType.Cv8U, 1, 0, 3);
            CvInvoke.Sobel(gray, gradY, Emgu.CV.CvEnum.DepthType.Cv8U, 0, 1, 3);

            CvInvoke.ConvertScaleAbs(gradX, absGradX, 1, 0);
            CvInvoke.ConvertScaleAbs(gradY, absGradY, 1, 0);

            CvInvoke.AddWeighted(absGradX, .5, absGradY, .5, 0, sobelGrad);

            CvInvoke.Imshow("sobel x", absGradX);
            CvInvoke.Imshow("sobel Y", absGradY);
            CvInvoke.Imshow("sobel", sobelGrad);

            CvInvoke.Imwrite("sobelX.jpg", absGradX);
            CvInvoke.Imwrite("sobelY.jpg", absGradY);
            CvInvoke.Imwrite("sobel.jpg", sobelGrad);

            CvInvoke.Imshow("gray", gray);
            CvInvoke.WaitKey(0);
        }
コード例 #3
0
ファイル: TensorConvert.cs プロジェクト: ersinkecis/EmguCV
        private static Tensor ReadTensorFromMatBgr(Mat image, float inputMean, float scale, DataType type)
        {
            if (type == DataType.Float)
            {
                Tensor t = new Tensor(type, new int[] { 1, image.Height, image.Width, 3 });
                using (Mat matF = new Mat(image.Size, Emgu.CV.CvEnum.DepthType.Cv32F, 3, t.DataPointer, sizeof(float) * 3 * image.Width))
                {
                    image.ConvertTo(matF, Emgu.CV.CvEnum.DepthType.Cv32F, scale, -inputMean * scale);
                }
                return(t);
            }
            else if (type == DataType.Uint8)
            {
                Tensor t = new Tensor(type, new int[] { 1, image.Height, image.Width, 3 });

                using (Mat matB = new Mat(image.Size, Emgu.CV.CvEnum.DepthType.Cv8U, 3, t.DataPointer, sizeof(byte) * 3 * image.Width))
                {
                    if (scale == 1.0f && inputMean == 0)
                    {
                        image.CopyTo(matB);
                    }
                    else
                    {
                        CvInvoke.ConvertScaleAbs(image, matB, scale, -inputMean * scale);
                    }
                }
                return(t);
            }
            else
            {
                throw new Exception(String.Format("Data Type of {0} is not supported.", type));
            }
        }
コード例 #4
0
        //拉普拉斯锐化
        private void button4_Click(object sender, EventArgs e)
        {
            Image <Bgr, byte> srcimage = src.Copy();
            //【0】变量的定义
            Mat src_gray = new Mat();
            Mat dst      = new Mat();
            Mat abs_dst  = new Mat();

            //【1】使用高斯滤波消除噪声
            CvInvoke.GaussianBlur(srcimage, srcimage, new Size(3, 3), 0, 0);
            imageBox2.Image = srcimage;
            //【2】转换为灰度图
            CvInvoke.CvtColor(srcimage, src_gray, ColorConversion.Bgr2Gray);
            imageBox3.Image = src_gray;
            //【3】使用Laplace函数
            CvInvoke.Laplacian(src_gray, dst, DepthType.Cv16S, 3, 1, 0);
            //第一个参数,InputArray类型的image,输入图像,即源图像,填Mat类的对象即可,且需为单通道8位图像。
            //第二个参数,OutputArray类型的edges,输出的边缘图,需要和源图片有一样的尺寸和通道数。
            //第三个参数,int类型的ddept,目标图像的深度。
            //第四个参数,int类型的ksize,用于计算二阶导数的滤波器的孔径尺寸,大小必须为正奇数,且有默认值1。
            //第五个参数,double类型的scale,计算拉普拉斯值的时候可选的比例因子,有默认值1。
            //第六个参数,double类型的delta,表示在结果存入目标图(第二个参数dst)之前可选的delta值,有默认值0。
            //第七个参数, int类型的borderType,边界模式,默认值为BORDER_DEFAULT。这个参数可以在官方文档中borderInterpolate()处得到更详细的信息。
            //【4】计算绝对值,并将结果转换成8位
            CvInvoke.ConvertScaleAbs(dst, abs_dst, 1, 0);
            imageBox4.Image = abs_dst;
        }
コード例 #5
0
ファイル: utils.cs プロジェクト: janussanders/EmguTF-PoseNet
        /// <summary>
        /// Private interface to convert a BGR Mat image to a Tensor.
        /// Actually perfom Emgu.CV.Mat to Emgu.TF.Lite.Tensor conversion.
        /// Stolen from https://github.com/emgucv/emgutf/blob/master/Emgu.TF.Example/CVInterop/TensorConvert.cs
        /// </summary>
        /// <param name="image">The input Emgu CV Mat</param>
        /// <param name="inputMean">The mean, if it is not 0, the value will be substracted from the pixel values</param>
        /// <param name="scale">The optional scale</param>
        /// <param name="t">The pre-allocated output tensor. Dimension must match (1, inputHeight, inputWidth, 3)</param>
        /// <returns>The tensorflow tensor</returns>
        private static void ReadTensorFromMatBgr(Mat image, float inputMean, float scale, Tensor t)
        {
            DataType type = t.Type;

            if (type == DataType.Float32)
            {
                using (Mat matF = new Mat(image.Size, Emgu.CV.CvEnum.DepthType.Cv32F, 3, t.DataPointer, sizeof(float) * 3 * image.Width))
                {
                    image.ConvertTo(matF, Emgu.CV.CvEnum.DepthType.Cv32F);
                }
            }
            else if (type == DataType.UInt8)
            {
                using (Mat matB = new Mat(image.Size, Emgu.CV.CvEnum.DepthType.Cv8U, 3, t.DataPointer, sizeof(byte) * 3 * image.Width))
                {
                    if (scale == 1.0f && inputMean == 0)
                    {
                        image.CopyTo(matB);
                    }
                    else
                    {
                        CvInvoke.ConvertScaleAbs(image, matB, scale, -inputMean * scale);
                    }
                }
            }
            else
            {
                throw new Exception(String.Format("Data Type of {0} is not supported.", type));
            }
        }
コード例 #6
0
ファイル: Form1.cs プロジェクト: xiaodelea/Emgucv
        private void sobelToolStripMenuItem_Click(object sender, EventArgs e)
        {
            try
            {
                if (pictureBox1.Image == null)
                {
                    return;
                }

                float[,] data =
                {
                    { -1, 0, 1 },
                    { -2, 0, 2 },
                    { -1, 0, 1 }
                };
                Matrix <float> SEx = new Matrix <float>(data);

                Matrix <float> SEy = SEx.Transpose();

                var img = new Bitmap(pictureBox1.Image)
                          .ToImage <Bgr, float>();

                var Gx = new Mat();
                var Gy = new Mat();

                CvInvoke.Sobel(img, Gx, Emgu.CV.CvEnum.DepthType.Cv32F, 1, 0);
                CvInvoke.Sobel(img, Gy, Emgu.CV.CvEnum.DepthType.Cv32F, 0, 1);

                var gx = Gx.ToImage <Gray, float>();
                var gy = Gy.ToImage <Gray, float>();

                var Gxx = new Mat(Gx.Size, Emgu.CV.CvEnum.DepthType.Cv32F, 1);
                var Gyy = new Mat(Gx.Size, Emgu.CV.CvEnum.DepthType.Cv32F, 1);

                CvInvoke.ConvertScaleAbs(Gx, Gxx, 0, 0);
                CvInvoke.ConvertScaleAbs(Gy, Gyy, 0, 0);

                var mag = new Mat(Gx.Size, Emgu.CV.CvEnum.DepthType.Cv8U, 1);
                CvInvoke.AddWeighted(Gxx, 0.5, Gyy, 0.5, 0, mag);

                AddImage(mag.ToImage <Bgr, byte>(), "Mag Absolute");


                gx._Mul(gx);
                gy._Mul(gy);

                var M = new Mat(gx.Size, Emgu.CV.CvEnum.DepthType.Cv8U, 1);
                CvInvoke.Sqrt(gx + gy, M);
                AddImage(M.ToImage <Bgr, byte>(), "Mag Squared");
                //CvInvoke.Filter2D(img, Gx, SEx, new Point(-1, -1));
                //CvInvoke.Filter2D(img, Gy, SEy, new Point(-1, -1));

                pictureBox1.Image = M.ToBitmap();
            }
            catch (Exception ex)
            {
                MessageBox.Show(ex.Message);
            }
        }
コード例 #7
0
        static Rectangle get_rectangle_by_sobel(string filename)
        {
            Rectangle ret = Rectangle.Empty;
            //string filename = @"C:\Tools\avia\images\Final270\iphone6 Gold\0123.6.bmp";
            Mat m = CvInvoke.Imread(filename, Emgu.CV.CvEnum.ImreadModes.Grayscale);
            Image <Gray, Byte> img = m.ToImage <Gray, Byte>().GetSubRect(new Rectangle(new Point(5, 5), new Size(m.Width - 10, m.Height - 10)));
            Mat b1 = new Mat();

            CvInvoke.GaussianBlur(img, b1, new Size(3, 3), 0, 0, BorderType.Default);
            Mat dx = new Mat();
            Mat dy = new Mat();

            CvInvoke.Sobel(b1, dx, DepthType.Cv16S, 1, 0);
            CvInvoke.ConvertScaleAbs(dx, dx, 1, 0);
            CvInvoke.Sobel(b1, dy, DepthType.Cv16S, 0, 1);
            CvInvoke.ConvertScaleAbs(dy, dy, 1, 0);
            dx.Save("temp_x.bmp");
            dy.Save("temp_y.bmp");
            Mat[]       ms = new Mat[] { dx, dy };
            Rectangle[] rs = new Rectangle[] { Rectangle.Empty, Rectangle.Empty };
            for (int idx = 0; idx < ms.Length; idx++)
            {
                double    otsu = CvInvoke.Threshold(ms[idx], ms[idx], 0, 255, ThresholdType.Binary | ThresholdType.Otsu);
                Rectangle roi  = new Rectangle();
                using (VectorOfVectorOfPoint contours = new VectorOfVectorOfPoint())
                {
                    CvInvoke.FindContours(ms[idx], contours, null, RetrType.External, ChainApproxMethod.ChainApproxNone);
                    int count = contours.Size;
                    for (int i = 0; i < count; i++)
                    {
                        //double a1 = CvInvoke.ContourArea(contours[i], false);
                        //if (a1 > 1)
                        {
                            //Program.logIt($"area: {a1}");
                            Rectangle rt = CvInvoke.BoundingRectangle(contours[i]);
                            if (roi.IsEmpty)
                            {
                                roi = rt;
                            }
                            else
                            {
                                roi = Rectangle.Union(roi, rt);
                            }
                        }
                    }
                }
                rs[idx] = roi;
                //Program.logIt($"RectX: {roi}, size={toFloat(roi)}");
            }
            ret = new Rectangle(rs[0].X, rs[1].Y, rs[0].Width, rs[1].Height);
            //Program.logIt($"Rect: {ret}, size={toFloat(ret)}");
            return(ret);
        }
コード例 #8
0
        //public void findBarTwo() {
        //    var imagecopy = image.Copy();
        //   // var smoothImage = imagecopy.SmoothGaussian(3);
        //    var barLineImage = imagecopy.InRange(new Gray(0),new Gray(100));
        //    var lines=   barLineImage.HoughLinesBinary(1,Math.PI/45,10,10,10)[0];


        //    foreach (LineSegment2D line in lines) {
        //        barLineImage.Draw(line,new Gray(60),3);
        //        line.
        //    }
        //    imageBox.Image = barLineImage;
        //}
        public void findBar3()
        {
            var imagecopy = image.Copy();
            var sobelX    = image.Sobel(1, 0, -1);
            var sobelY    = image.Sobel(0, 1, -1);

            var gradient = sobelX.Sub(sobelY);

            CvInvoke.ConvertScaleAbs(gradient, gradient, 1, 0);
            var bluredImage    = gradient.SmoothBlur(9, 9);
            var byteImage      = bluredImage.Convert <Gray, byte>();
            var thresholdImage = byteImage.ThresholdBinary(new Gray(180), new Gray(255));
            var element        = CvInvoke.GetStructuringElement(Emgu.CV.CvEnum.ElementShape.Rectangle, new Size(21, 7), new Point(-1, -1));
            var closed         = new Image <Gray, byte>(byteImage.Width, byteImage.Height);

            closed = thresholdImage.Dilate(2);
            //  CvInvoke.MorphologyEx(closed,closed, Emgu.CV.CvEnum.MorphOp.Close,element,new Point(-1,-1),2, Emgu.CV.CvEnum.BorderType.Default,CvInvoke.MorphologyDefaultBorderValue);
            // closed = closed.Dilate(2);
            //   closed = closed.Erode(4);


            VectorOfVectorOfPoint contours = new VectorOfVectorOfPoint();

            // showImage1(closed, "Threshold");
            CvInvoke.FindContours(closed, contours, null, Emgu.CV.CvEnum.RetrType.List, Emgu.CV.CvEnum.ChainApproxMethod.ChainApproxNone);
            double maxArea  = 0;
            int    maxIndex = -1;

            for (int i = 0; i < contours.Size; i++)
            {
                double tempArea = CvInvoke.ContourArea(contours[i]);
                if (tempArea > maxArea)
                {
                    maxArea  = tempArea;
                    maxIndex = i;
                }
            }
            var rect = CvInvoke.BoundingRectangle(contours[maxIndex]);
            // CvInvoke.DrawContours(imagecopy, contours, maxIndex, new MCvScalar(60), 3);
            var imagecopy1 = rgbImage.Copy();

            imagecopy1.Draw(rect, new Bgra(0, 255, 0, 100), 3);
            CvInvoke.PutText(imagecopy1, "Found!", rect.Location, Emgu.CV.CvEnum.FontFace.HersheyComplex, 14, new MCvScalar(0, 255, 0));
            imageBox.Image = imagecopy1;
            showImage(sobelX, "SobelX");
            showImage(sobelY, "SobelY");
            showImage(gradient, "Gradient");
            showImage(bluredImage, "BluredImage");

            showImage1(byteImage, "ByteImage");
            showImage1(thresholdImage, "ThresholdImage");
            showImage1(closed, "Closed");
        }
コード例 #9
0
        public Rectangle DetectBarcode(Image <Bgr, byte> capturedFrame, int a = 21, int b = 7)
        {
            Mat grayscaleFrame = new Mat();
            Mat gradX          = new Mat();
            Mat gradY          = new Mat();
            Mat absGradX       = new Mat();
            Mat absGradY       = new Mat();
            Mat fullGrad       = new Mat();
            Mat bluredFrame    = new Mat();
            Mat thresholdFrame = new Mat();
            //Mat verticalRectangle = CvInvoke.GetStructuringElement(Emgu.CV.CvEnum.ElementShape.Rectangle, new Size(16, 11), new Point(1, 1));
            //Mat horizontalRectangle = CvInvoke.GetStructuringElement(Emgu.CV.CvEnum.ElementShape.Rectangle, new Size(3, 6), new Point(1, 1));
            Mat verticalRectangle   = CvInvoke.GetStructuringElement(Emgu.CV.CvEnum.ElementShape.Rectangle, new Size(Math.Max(a, 1), Math.Max(b, 1)), new Point(1, 1));
            Mat horizontalRectangle = CvInvoke.GetStructuringElement(Emgu.CV.CvEnum.ElementShape.Rectangle, new Size(6, 6), new Point(1, 1));

            //Convert to grayscale
            CvInvoke.CvtColor(capturedFrame, grayscaleFrame, ColorConversion.Bgr2Gray);
            // Gradient X AND Y
            CvInvoke.Sobel(grayscaleFrame, gradX, Emgu.CV.CvEnum.DepthType.Cv8U, 1, 0);
            CvInvoke.Sobel(grayscaleFrame, gradY, Emgu.CV.CvEnum.DepthType.Cv8U, 0, 1);
            //Abs values of gradient
            CvInvoke.ConvertScaleAbs(gradX, absGradX, (double)2, (double)0);
            CvInvoke.ConvertScaleAbs(gradY, absGradY, (double)2, (double)0);
            //Detection of vertical lines
            CvInvoke.Subtract(absGradX, absGradY, fullGrad);
            //Blur
            CvInvoke.Blur(fullGrad, bluredFrame, new Size(2, 2), new Point(-1, -1));
            //Binarization
            CvInvoke.Threshold(bluredFrame, thresholdFrame, 80, 255, Emgu.CV.CvEnum.ThresholdType.Binary);
            // Closure
            CvInvoke.MorphologyEx(thresholdFrame, thresholdFrame, Emgu.CV.CvEnum.MorphOp.Close, verticalRectangle, new Point(-1, -1), 2, Emgu.CV.CvEnum.BorderType.Constant, new MCvScalar((double)0));
            //Erosion
            CvInvoke.MorphologyEx(thresholdFrame, thresholdFrame, Emgu.CV.CvEnum.MorphOp.Erode, horizontalRectangle, new Point(-1, -1), 1, Emgu.CV.CvEnum.BorderType.Constant, new MCvScalar((double)0));

            ProcessedImageStep1 = gradX;
            ProcessedImageStep2 = gradY;
            ProcessedImageStep3 = fullGrad;
            ProcessedImageStep4 = bluredFrame;
            ProcessedImageStep5 = thresholdFrame;

            VectorOfVectorOfPoint contours = new VectorOfVectorOfPoint();

            CvInvoke.FindContours(thresholdFrame, contours, null, Emgu.CV.CvEnum.RetrType.List, Emgu.CV.CvEnum.ChainApproxMethod.ChainApproxNone);

            Rectangle r            = _FindLargestRectFromContours(contours);
            Rectangle newrectangle = new Rectangle((int)(r.X - r.Width / 8), (int)(r.Y - r.Height / 8), (int)(r.Width * 1.25m), (int)(r.Height * 1.25m));

            return(newrectangle);
        }
コード例 #10
0
        int max_thresh = 175; //最大阈值

        private void button2_Click(object sender, EventArgs e)
        {
            //---------------------------【1】定义一些局部变量-----------------------------
            Image <Gray, float> dstImage = new Image <Gray, float>(src.Size);  //目标图
            Mat normImage = new Mat();                                         //归一化后的图
            Image <Gray, byte> scaledImage = new Image <Gray, byte>(src.Size); //线性变换后的八位无符号整型的图

            //---------------------------【2】初始化---------------------------------------
            //置零当前需要显示的两幅图,即清除上一次调用此函数时他们的值

            Image <Gray, byte> g_srcImage1 = src.Clone();

            //---------------------------【3】正式检测-------------------------------------
            //进行角点检测  点检测传出的为Float类型的数据
            CvInvoke.CornerHarris(src, dstImage, 2);

            // 归一化与转换
            CvInvoke.Normalize(dstImage, normImage, 0, 255, Emgu.CV.CvEnum.NormType.MinMax);
            double min = 0, max = 0;
            Point  minp = new Point(0, 0);
            Point  maxp = new Point(0, 0);

            CvInvoke.MinMaxLoc(normImage, ref min, ref max, ref minp, ref maxp);
            double scale = 255 / (max - min);
            double shift = min * scale;

            CvInvoke.ConvertScaleAbs(normImage, scaledImage, scale, shift);//将归一化后的图线性变换成8位无符号整型

            //---------------------------【4】进行绘制-------------------------------------
            // 将检测到的,且符合阈值条件的角点绘制出来
            byte[] data = scaledImage.Bytes;
            for (int j = 0; j < normImage.Rows; j++)
            {
                for (int i = 0; i < normImage.Cols; i++)
                {
                    int k = i * src.Width + j;
                    if (k < data.Length)
                    {
                        if (data[k] > thresh)
                        {
                            CvInvoke.Circle(g_srcImage1, new Point(i, j), 5, new MCvScalar(10, 10, 255), 2);
                            CvInvoke.Circle(scaledImage, new Point(i, j), 5, new MCvScalar(0, 10, 255), 2);
                        }
                    }
                }
            }
            imageBox1.Image = g_srcImage1;
            imageBox2.Image = scaledImage;
        }
コード例 #11
0
ファイル: Form1.cs プロジェクト: xiaodelea/Emgucv
        private void scharrToolStripMenuItem_Click(object sender, EventArgs e)
        {
            try
            {
                if (pictureBox1.Image == null)
                {
                    return;
                }

                float[,] data =
                {
                    {  -3, 0,  3 },
                    { -10, 0, 10 },
                    {  -3, 0,  3 }
                };
                Matrix <float> SEx = new Matrix <float>(data);

                Matrix <float> SEy = SEx.Transpose();

                var img = new Bitmap(pictureBox1.Image)
                          .ToImage <Gray, float>();

                var Gx = new Mat();
                var Gy = new Mat();

                CvInvoke.Scharr(img, Gx, Emgu.CV.CvEnum.DepthType.Cv16S, 1, 0);
                CvInvoke.Scharr(img, Gy, Emgu.CV.CvEnum.DepthType.Cv16S, 0, 1);

                CvInvoke.ConvertScaleAbs(Gx, Gx, 0, 0);
                CvInvoke.ConvertScaleAbs(Gy, Gy, 0, 0);

                CvInvoke.Multiply(Gx, Gx, Gx);
                CvInvoke.Multiply(Gy, Gy, Gy);

                Gx.ConvertTo(Gx, Emgu.CV.CvEnum.DepthType.Cv32F);
                Gy.ConvertTo(Gy, Emgu.CV.CvEnum.DepthType.Cv32F);

                var M = new Mat(Gx.Size, Emgu.CV.CvEnum.DepthType.Cv32F, 1);
                CvInvoke.Sqrt(Gx + Gy, M);
                var imgout = M.ToImage <Bgr, byte>();
                AddImage(imgout, "Scharr");

                pictureBox1.Image = imgout.ToBitmap();
            }
            catch (Exception ex)
            {
                MessageBox.Show(ex.Message);
            }
        }
コード例 #12
0
        private void Btn_Scharr_Click(object sender, EventArgs e)
        {
            var bitmap = this.pic_src.GetFirstRegionRect();
            Image <Gray, byte> image = new Image <Gray, byte>(bitmap);

            Mat matX = new Mat(image.Size, DepthType.Cv64F, 1);
            Mat matY = new Mat(image.Size, DepthType.Cv64F, 1);

            CvInvoke.Scharr(image, matX, DepthType.Cv64F, 1, 0);
            CvInvoke.ConvertScaleAbs(matX, matX, 1, 0);
            CvInvoke.Scharr(image, matY, DepthType.Cv64F, 0, 1);
            CvInvoke.ConvertScaleAbs(matY, matY, 1, 0);
            this.ibX.Image = matX;
            this.ibY.Image = matY;
        }
コード例 #13
0
        private void button2_Click(object sender, EventArgs e)
        {
            if (srcImg == null)
            {
                MessageBox.Show("请选择原图片!");
                return;
            }
            Image <Bgr, Byte> dstImg  = srcImg.CopyBlank();
            Image <Bgr, Byte> dstImg2 = srcImg.CopyBlank();

            CvInvoke.Laplacian(srcImg, dstImg, DepthType.Default);
            imageBox2.Image = dstImg;                        //梯度图
            CvInvoke.ConvertScaleAbs(dstImg, dstImg2, 1, 0); // 和下面一样 只是试试这种方法
            dstImg2         = srcImg.Add(dstImg2);
            imageBox3.Image = dstImg2;
        }
コード例 #14
0
        private void manageBlur(Mat img, int blurMode, int kSize = 3)
        {
            Mat store = img.Clone();
            Image <Gray, Byte> gray = store.ToImage <Gray, Byte>();

            switch (blurMode)
            {
            case Constants.Sobel:
            {
                Image <Gray, float> sobelX = gray.Sobel(1, 0, kSize);
                Image <Gray, float> sobelY = gray.Sobel(0, 1, kSize);

                sobelX = sobelX.AbsDiff(new Gray(0));
                sobelY = sobelY.AbsDiff(new Gray(0));

                Image <Gray, float> sobel = sobelX + sobelY;

                double[] mins, maxs;
                //Find sobel min or max value position
                System.Drawing.Point[] minLoc, maxLoc;
                sobel.MinMax(out mins, out maxs, out minLoc, out maxLoc);
                //Conversion to 8-bit image
                Image <Gray, Byte> sobelImage = sobel.ConvertScale <byte>(255 / maxs[0], 0);
                CurrentMat = sobelImage.Mat;
                break;
            }

            case Constants.Laplace:
            {
                Image <Gray, float> targetImage = gray.Laplace(kSize);
                CvInvoke.ConvertScaleAbs(targetImage, targetImage, 1, 0);

                CurrentMat = targetImage.Mat;
                break;
            }

            case Constants.Median:
                break;

            case Constants.Gaussian:
                break;
            }
            showImg(CurrentMat);
        }
コード例 #15
0
        public Mat FingerprintDescriptor(Mat input)
        {
            var harris_normalised = PrepareImage(input);

            float            threshold  = 125.0f;
            List <MKeyPoint> mKeyPoints = new List <MKeyPoint>();
            Mat rescaled = new Mat();
            VectorOfKeyPoint keypoints = new VectorOfKeyPoint();
            double           scale = 1.0, shift = 0.0;

            CvInvoke.ConvertScaleAbs(harris_normalised, rescaled, scale, shift);
            Mat[]       mat         = new Mat[] { rescaled, rescaled, rescaled };
            VectorOfMat vectorOfMat = new VectorOfMat(mat);

            int[] from_to  = { 0, 0, 1, 1, 2, 2 };
            Mat   harris_c = new Mat(rescaled.Size, DepthType.Cv8U, 3);

            CvInvoke.MixChannels(vectorOfMat, harris_c, from_to);
            for (int x = 0; x < harris_c.Width; x++)
            {
                for (int y = 0; y < harris_c.Height; y++)
                {
                    if (GetFloatValue(harris_c, x, y) > threshold)
                    {
                        MKeyPoint m = new MKeyPoint
                        {
                            Size  = 1,
                            Point = new PointF(x, y)
                        };
                        mKeyPoints.Add(m);
                    }
                }
            }

            keypoints.Push(mKeyPoints.ToArray());
            Mat         descriptors = new Mat();
            ORBDetector ORBCPU      = new ORBDetector();

            ORBCPU.Compute(_input_thinned, keypoints, descriptors);

            return(descriptors);
        }
コード例 #16
0
ファイル: EmulatedCamera.cs プロジェクト: winkula/gamebot
        private void AddNoise(Mat image)
        {
            const double noiseLevel = 0.75;
            var          mean       = new MCvScalar(0);
            var          std        = new MCvScalar(255);
            const int    gaussSize  = 13;
            const double scale      = 0.5;
            const double shift      = 100;

            var noise = new Mat(image.Size, DepthType.Cv8U, 1);

            using (ScalarArray scalarArray1 = new ScalarArray(mean))
                using (ScalarArray scalarArray2 = new ScalarArray(std))
                {
                    CvInvoke.Randn(noise, scalarArray1, scalarArray2);
                }
            CvInvoke.GaussianBlur(noise, noise, new Size(gaussSize, gaussSize), 0.0);
            CvInvoke.AddWeighted(image, 1 - noiseLevel, noise, noiseLevel, 0, image, image.Depth);
            CvInvoke.ConvertScaleAbs(image, image, scale, shift);
        }
コード例 #17
0
        private void button1_Click(object sender, EventArgs e)
        {
            Mat kernel;

            Image <Gray, float> grayImage = new Image <Gray, float>(img.Bitmap);


            if (radioButton1.Checked)
            {
                //kernel = new Matrix<float>(mask1);
                kernel = mask1.Mat;
            }
            else if (radioButton2.Checked)
            {
                kernel = mask2.Mat;
            }
            else
            {
                kernel = mask3.Mat;
            }

            Point anchor = new Point(-1, -1);
            Mat   srcImg = grayImage.Mat;
            Mat   imgDst = grayImage.Mat;

            Mat m = new Mat();

            kernel.ConvertTo(m, Emgu.CV.CvEnum.DepthType.Cv8S);


            CvInvoke.Filter2D(srcImg, imgDst, m, anchor);
            var img3 = imgDst;

            CvInvoke.ConvertScaleAbs(imgDst, img3, 1, 0);

            img  = new Image <Gray, float>(img3.Bitmap);
            imgt = new Image <Bgr, byte>(img3.Bitmap);

            form.SetImage(new Image <Bgr, byte>(img3.Bitmap));
            form.Refresh();
        }
コード例 #18
0
        public static Mat sobelEdgeDetection(ref Mat src_roi)
        {
            Mat roi_gray  = new Mat();
            Mat grad_x    = new Mat();
            Mat grad_y    = new Mat();
            Mat grad_absx = new Mat();
            Mat grad_absy = new Mat();
            Mat roi_soble = new Mat();

            CvInvoke.CvtColor(src_roi, roi_gray, ColorConversion.Rgb2Gray);

            CvInvoke.Sobel(roi_gray, grad_x, DepthType.Cv16S, 1, 0, 3, 1, 1, BorderType.Default);//x方向的sobel检测
            CvInvoke.ConvertScaleAbs(grad_x, grad_absx, 1, 0);

            CvInvoke.Sobel(roi_gray, grad_y, DepthType.Cv16S, 0, 1, 3, 1, 1, BorderType.Default);//y方向的sobel检测
            CvInvoke.ConvertScaleAbs(grad_y, grad_absy, 1, 0);

            CvInvoke.AddWeighted(grad_absx, 0.5, grad_absy, 0.5, 0, roi_soble);

            return(roi_soble);
        }
コード例 #19
0
        public void CornerDetection(VisionProfile profile, Mat img)
        {
            var output                 = new Mat();
            var outputNormalized       = new Mat();
            var outputNormalizedScaled = new Mat();

            CvInvoke.CornerHarris(img, output, profile.HarrisCornerBlockSize, profile.HarrisCornerAperture, profile.HarrisCornerK, BorderType.Default);
            CvInvoke.Normalize(output, outputNormalized, 0, 255, NormType.MinMax, DepthType.Cv32F, null);
            CvInvoke.ConvertScaleAbs(outputNormalized, outputNormalizedScaled, 5, 5);

            for (int j = 0; j < outputNormalized.Rows; j++)
            {
                for (int i = 0; i < outputNormalized.Cols; i++)
                {
                    //  if ((int)outputNormalized.GetData(j,i) > profile.HarrisCornerThreshold)
                    {
                        //   circle(outputNormalizedScaled, Point(i, j), 5, Scalar(0), 2, 8, 0);
                    }
                }
            }
        }
コード例 #20
0
        /// <summary>
        /// Calculates the approximation of the image gradient.
        /// </summary>
        /// <param name="srcGray">Source image.</param>
        /// <param name="scale">Scale of the Sobel operator.</param>
        /// <param name="delta">Delta of the Sobel operator.</param>
        /// <param name="kernelSize">Kernel size of the Sobel operator.</param>
        /// <returns>Mat.</returns>
        private static Mat GetGradient(Mat srcGray, int scale = 1, int delta = 0, int kernelSize = 5)
        {
            Mat       gradX    = new Mat();
            Mat       gradY    = new Mat();
            Mat       absGradX = new Mat();
            Mat       absGradY = new Mat();
            DepthType ddepth   = DepthType.Cv32F;

            // Calculate the x and y gradients using Sobel operator
            CvInvoke.Sobel(srcGray, gradX, ddepth, 1, 0, kernelSize, scale, delta, BorderType.Default);
            CvInvoke.ConvertScaleAbs(gradX, absGradX, scale, delta);

            CvInvoke.Sobel(srcGray, gradY, ddepth, 0, 1, kernelSize, scale, delta, BorderType.Default);
            CvInvoke.ConvertScaleAbs(gradY, absGradY, scale, delta);

            // Combine the two gradients
            Mat grad = new Mat();

            CvInvoke.AddWeighted(absGradX, 0.5, absGradY, 0.5, 0, grad);

            return(grad);
        }
コード例 #21
0
        private void button3_Click(object sender, EventArgs e)
        {
            if (srcImg == null)
            {
                MessageBox.Show("请选择原图片!");
                return;
            }
            Image <Bgr, Byte> dstImg  = srcImg.CopyBlank();
            Image <Bgr, Byte> dstImg2 = srcImg.CopyBlank();

            CvInvoke.Sobel(srcImg, dstImg, DepthType.Default, 1, 0);
            imageBox2.Image = dstImg;
            dstImg2         = srcImg.Add(dstImg);
            imageBox3.Image = dstImg2;

            //显示梯度图2
            Image <Bgr, Byte> grad_x  = srcImg.CopyBlank();
            Image <Bgr, Byte> grad_y  = srcImg.CopyBlank();
            Image <Bgr, Byte> abs_x   = srcImg.CopyBlank();
            Image <Bgr, Byte> abs_y   = srcImg.CopyBlank();
            Image <Bgr, Byte> gradImg = srcImg.CopyBlank();


            CvInvoke.Sobel(srcImg, grad_x, DepthType.Default, 1, 0);
            CvInvoke.Sobel(srcImg, grad_y, DepthType.Default, 0, 1);

            //绝对值
            CvInvoke.ConvertScaleAbs(grad_x, abs_x, 1, 0);
            CvInvoke.ConvertScaleAbs(grad_y, abs_y, 1, 0);

            //两个方向平方
            abs_x.Pow(2);
            abs_y.Pow(2);

            //结果是梯度平方
            CvInvoke.Add(abs_x, abs_y, gradImg);

            imageBox4.Image = gradImg;
        }
コード例 #22
0
    public List <Vector2> GetCornerPoints()
    {
        Image <Gray, float> cornerimg    = new Image <Gray, float>(this.img.Size);
        Image <Gray, Byte>  cornerthrimg = new Image <Gray, Byte>(this.img.Size);
        Image <Gray, Byte>  cannyimg     = this.img.Canny(60, 100);

        CvInvoke.CornerHarris(cannyimg, cornerimg, 3, 3, 0.04);

        //CvInvoke.cvNormalize(cornerimg, cornerimg, 0, 255, Emgu.CV.CvEnum.NORM_TYPE.CV_MINMAX, IntPtr.Zero);  //标准化处理

        double min = 0, max = 0;

        System.Drawing.Point minp = new System.Drawing.Point(0, 0);
        System.Drawing.Point maxp = new System.Drawing.Point(0, 0);
        CvInvoke.MinMaxLoc(cornerimg, ref min, ref max, ref minp, ref maxp);
        double scale = 255 / (max - min);
        double shift = min * scale;

        CvInvoke.ConvertScaleAbs(cornerimg, cornerthrimg, scale, shift);//进行缩放,转化为byte类型
        byte[]         data      = cornerthrimg.Bytes;
        List <Vector2> corners   = new List <Vector2>();
        List <Vector3> corners_3 = new List <Vector3>();

        for (int i = 0; i < cornerimg.Height; i++)
        {
            for (int j = 0; j < cornerimg.Width; j++)
            {
                int k = i * cornerthrimg.Width + j;
                if (data[k] > 80)    //通过阈值判断
                {
                    corners.Add(new Vector2(j, i));
                    corners_3.Add(m_projector.ImageToWorld(corners.Last()));
                }
            }
        }
        m_renderEngine.DrawPoints(corners_3);
        return(corners);
    }
コード例 #23
0
        private void Bt_filter_Click(object sender, EventArgs e)
        {
            var bitmap = this.pic_src.GetFirstRegionRect();

            float[,] arr = new float[3, 3] {
                { 0, -1, 0 }, { -1, 4, -1 }, { 0, -1, 0 }
            };
            //
            //    |-1 0 1| |-2 0 2| |-1 0 1|
            float[,] arr1 = new float[3, 3] {
                { -1, 0, 1 }, { -2, 0, 2 }, { -1, 0, 1 }
            };

            Matrix <float> kernel = new Matrix <float>(arr1);

            var image = new Image <Gray, byte>(bitmap);
            Mat matX  = new Mat(image.Size, DepthType.Cv64F, 1);

            CvInvoke.Filter2D(image, matX, kernel, new Point(-1, -1));
            CvInvoke.ConvertScaleAbs(matX, matX, 1, 0);

            this.ibX.Image = matX;
        }
コード例 #24
0
        private Mat PreProcessImage(Mat image)
        {
            ShowImage("Image", image);
            Mat tmpImg = new Mat();
            Mat sob1   = new Mat();
            Mat sob2   = new Mat();

            CvInvoke.CvtColor(image, tmpImg, Emgu.CV.CvEnum.ColorConversion.Bgra2Gray);
            CvInvoke.Sobel(tmpImg, sob1, Emgu.CV.CvEnum.DepthType.Cv8U, 1, 0, 1);
            CvInvoke.Sobel(tmpImg, sob2, Emgu.CV.CvEnum.DepthType.Cv8U, 0, 1, 1);
            CvInvoke.Subtract(sob1, sob2, tmpImg);
            ShowImage("AfterSobel", tmpImg);
            CvInvoke.ConvertScaleAbs(tmpImg, tmpImg, 1, 0);
            CvInvoke.Blur(tmpImg, tmpImg, new Size(9, 9), new Point(0, 0));
            CvInvoke.Threshold(tmpImg, tmpImg, 45, 255, Emgu.CV.CvEnum.ThresholdType.Binary);
            //CvInvoke.AdaptiveThreshold(tmpImg, tmpImg, 255, Emgu.CV.CvEnum.AdaptiveThresholdType.MeanC, Emgu.CV.CvEnum.ThresholdType.Binary, 3, 10);
            //CvInvoke.BitwiseNot(tmpImg, tmpImg);
            ShowImage("AfterThresh", tmpImg);
            var kernel = CvInvoke.GetStructuringElement(Emgu.CV.CvEnum.ElementShape.Rectangle, new Size(21, 7), new Point(0, 0));

            CvInvoke.MorphologyEx(tmpImg, tmpImg, Emgu.CV.CvEnum.MorphOp.Close, kernel, new Point(0, 0), 1, Emgu.CV.CvEnum.BorderType.Default, new MCvScalar(255));
            ShowImage("After Morphology", tmpImg);
            CvInvoke.Erode(tmpImg, tmpImg, null, new Point(0, 0), 7, Emgu.CV.CvEnum.BorderType.Default, new MCvScalar(255));
            CvInvoke.Dilate(tmpImg, tmpImg, null, new Point(0, 0), 7, Emgu.CV.CvEnum.BorderType.Default, new MCvScalar(255));
            Mat cts = new Mat(tmpImg.Size, Emgu.CV.CvEnum.DepthType.Cv8U, 1);

            ShowImage("After Erode/Dilate", tmpImg);
            VectorOfVectorOfPoint contours = new VectorOfVectorOfPoint();

            CvInvoke.FindContours(tmpImg, contours, null, Emgu.CV.CvEnum.RetrType.External, Emgu.CV.CvEnum.ChainApproxMethod.ChainApproxSimple);
            DrawContours(contours, cts);
            ShowImage("contours", cts);
            Rectangle rect = FindGlobalContour(contours, tmpImg);

            CvInvoke.Rectangle(image, rect, new MCvScalar(255), 3);
            return(new Mat(image, rect));
        }
コード例 #25
0
        /// <summary>
        /// Sobel边缘检测
        /// </summary>
        /// <param name="sender"></param>
        /// <param name="e"></param>
        private void button3_Click(object sender, EventArgs e)
        {
            Image <Bgr, byte> srcimage = src.Copy();
            //【1】创建 grad_x 和 grad_y 矩阵
            Mat grad_x     = new Mat();
            Mat grad_y     = new Mat();
            Mat abs_grad_x = new Mat();
            Mat abs_grad_y = new Mat();
            Mat dst        = new Mat();

            //【2】求 X方向梯度
            CvInvoke.Sobel(srcimage, grad_x, DepthType.Default, 1, 0);
            CvInvoke.ConvertScaleAbs(grad_x, abs_grad_x, 1, 0);
            imageBox2.Image = abs_grad_x;

            //【3】求Y方向梯度
            CvInvoke.Sobel(srcimage, grad_y, DepthType.Default, 0, 1);
            CvInvoke.ConvertScaleAbs(grad_y, abs_grad_y, 1, 0);
            imageBox3.Image = abs_grad_y;

            //【4】合并梯度(近似)
            CvInvoke.AddWeighted(abs_grad_x, 0.5, abs_grad_y, 0.5, 0, dst);
            imageBox4.Image = dst;
        }
コード例 #26
0
        static void Main(string[] args)
        {
            // Read image
            Mat img = CvInvoke.Imread(@"C:\EMT\Image\EMT_Lab2\ConnectImage3.png", ImreadModes.Grayscale);

            // Create window and show image
            CvInvoke.NamedWindow("Original", NamedWindowType.KeepRatio);
            CvInvoke.Imshow("Original", img);

            // Create new cv image same size as img
            Mat imglabel = new Mat(img.Rows, img.Cols, DepthType.Cv16U, 1);

            // Count number of connected components
            int label = CvInvoke.ConnectedComponents(img, imglabel, LineType.FourConnected, DepthType.Cv16U);

            // Create new cv image with unsigned 8 bit
            Mat imglabelscale = new Mat(img.Rows, img.Cols, DepthType.Cv8U, 1);

            // Find max and min values in cv image array
            CvInvoke.MinMaxIdx(imglabel, out double minVal, out double maxVal, null, null);

            // Scale image to follow min and max
            CvInvoke.ConvertScaleAbs(imglabel, imglabelscale, 255 / (maxVal - minVal), 0);

            // Write image to path as png
            CvInvoke.Imwrite(@"C:\EMT\Image\EMT_Lab2\Results1.png", imglabelscale);


            String imgtitle = "Connected Objects = " + Convert.ToString(label - 1);

            CvInvoke.NamedWindow(imgtitle, NamedWindowType.KeepRatio);
            CvInvoke.Imshow(imgtitle, imglabelscale);

            CvInvoke.WaitKey(0);
            CvInvoke.DestroyAllWindows();
        }
コード例 #27
0
    //DetectEdges

    public void DetectEdges()
    {
        CvInvoke.Normalize(CameraMat24, CameraMat24, 1, 254, NormType.MinMax);

        Debug.Log("Kauel: DetectEdges()");

        PauseCamera();

        if (EdgeMap != null)
        {
            EdgeMap.Dispose();
        }

        EdgeMap = new Mat(CameraMat24.Rows + 2, CameraMat24.Cols + 2, DepthType.Cv8U, 1);

        Rectangle roi = new Rectangle(1, 1, CameraMat24.Width, CameraMat24.Height);

        Mat EdgeMapCenter = new Mat(EdgeMap, roi);



        Mat img1 = CameraMat24.Clone();

        Mat img2 = img1.Clone();

        Mat img3 = img1.Clone();



        CvInvoke.FastNlMeansDenoising(img1, img1);            //Elimina el ruido.

        CvInvoke.GaussianBlur(img1, img2, new Size(9, 9), 9); //Blur

        CvInvoke.AddWeighted(img1, 1.5, img2, -0.5, 0, img1, DepthType.Cv8U);

        //img1.Save("C:/dnn/Filter.png");



        Mat imgCanny = img1.Clone();

        CvInvoke.Canny(img1, imgCanny, CannyLow, CannyHigh, CannyAperture);



        CvInvoke.CvtColor(img1, img1, ColorConversion.Bgr2Gray); //Bordes en escala de grises.



        CvInvoke.Sobel(img1, img2, DepthType.Cv32F, 1, 0, BorderAperture, 1);

        CvInvoke.Sobel(img1, img3, DepthType.Cv32F, 0, 1, BorderAperture, 1);



        CvInvoke.ConvertScaleAbs(img2, img2, 1, 0);

        CvInvoke.ConvertScaleAbs(img3, img3, 1, 0);

        CvInvoke.AddWeighted(img2, 1, img3, 1, 0, img3);

        img3.ConvertTo(img3, DepthType.Cv8U);



        //img3.Save("C:/dnn/SobelEroded.png");

        CvInvoke.AdaptiveThreshold(img3, img3, 255, AdaptiveThresholdType.MeanC, ThresholdType.Binary, ContrastAperture, -Contrast);

        //img3.Save("C:/dnn/Adaptive.png");

        CvInvoke.BitwiseOr(imgCanny, img3, img3);

        img3.CopyTo(img2);

        LineSegment2D[] lines = CvInvoke.HoughLinesP(img2, HoughLineRho, HoughLineAngle, HoughLineThreshold, HoughLineMinLineLength, HoughLineMaxGap);

        //img2.SetTo(Black);

        for (int i = 0; i < lines.Length; i++)
        {
            CvInvoke.Line(img3, lines[i].P1, lines[i].P2, White, 1);
        }

        lines = null;

        img3.CopyTo(EdgeMapCenter);



        img1.Dispose();

        img2.Dispose();

        img3.Dispose();

        imgCanny.Dispose();

        EdgeMapCenter.Dispose();
    }
コード例 #28
0
ファイル: BitmapExtension.cs プロジェクト: byancey/UVtools
        /// <summary>
        /// Convert raw data to bitmap
        /// </summary>
        /// <param name="scan0">The pointer to the raw data</param>
        /// <param name="step">The step</param>
        /// <param name="size">The size of the image</param>
        /// <param name="srcColorType">The source image color type</param>
        /// <param name="numberOfChannels">The number of channels</param>
        /// <param name="srcDepthType">The source image depth type</param>
        /// <param name="tryDataSharing">Try to create Bitmap that shares the data with the image</param>
        /// <returns>The Bitmap</returns>
        public static Bitmap RawDataToBitmap(IntPtr scan0, int step, Size size, Type srcColorType, int numberOfChannels,
                                             Type srcDepthType, bool tryDataSharing = false)
        {
            if (tryDataSharing)
            {
                if (srcColorType == typeof(Gray) && srcDepthType == typeof(Byte))
                {
                    //Grayscale of Bytes
                    Bitmap bmpGray = new Bitmap(
                        size.Width,
                        size.Height,
                        step,
                        PixelFormat.Format8bppIndexed,
                        scan0
                        )
                    {
                        Palette = GrayscalePalette
                    };


                    return(bmpGray);
                }
                // Mono in Linux doesn't support scan0 constructor with Format24bppRgb, use ToBitmap instead
                // See https://bugzilla.novell.com/show_bug.cgi?id=363431
                // TODO: check mono buzilla Bug 363431 to see when it will be fixed

                if (
                    Platform.OperationSystem == Platform.OS.Windows &&
                    Platform.ClrType == Platform.Clr.DotNet &&
                    srcColorType == typeof(Bgr) && srcDepthType == typeof(Byte) &&
                    (step & 3) == 0)
                {
                    //Bgr byte
                    return(new Bitmap(
                               size.Width,
                               size.Height,
                               step,
                               PixelFormat.Format24bppRgb,
                               scan0));
                }

                if (srcColorType == typeof(Bgra) && srcDepthType == typeof(Byte))
                {
                    //Bgra byte
                    return(new Bitmap(
                               size.Width,
                               size.Height,
                               step,
                               PixelFormat.Format32bppArgb,
                               scan0));
                }

                //PixelFormat.Format16bppGrayScale is not supported in .NET
                //else if (typeof(TColor) == typeof(Gray) && typeof(TDepth) == typeof(UInt16))
                //{
                //   return new Bitmap(
                //      size.width,
                //      size.height,
                //      step,
                //      PixelFormat.Format16bppGrayScale;
                //      scan0);
                //}
            }

            PixelFormat format;               //= System.Drawing.Imaging.PixelFormat.Undefined;

            if (srcColorType == typeof(Gray)) // if this is a gray scale image
            {
                format = PixelFormat.Format8bppIndexed;
            }
            else if (srcColorType == typeof(Bgra)) //if this is Bgra image
            {
                format = PixelFormat.Format32bppArgb;
            }
            else if (srcColorType == typeof(Bgr)) //if this is a Bgr Byte image
            {
                format = PixelFormat.Format24bppRgb;
            }
            else
            {
                using (Mat m = new Mat(size.Height, size.Width, CvInvoke.GetDepthType(srcDepthType), numberOfChannels,
                                       scan0, step))
                    using (Mat m2 = new Mat())
                    {
                        CvInvoke.CvtColor(m, m2, srcColorType, typeof(Bgr));
                        return(RawDataToBitmap(m2.DataPointer, m2.Step, m2.Size, typeof(Bgr), 3, srcDepthType));
                    }
            }

            Bitmap     bmp  = new Bitmap(size.Width, size.Height, format);
            BitmapData data = bmp.LockBits(
                new Rectangle(Point.Empty, size),
                ImageLockMode.WriteOnly,
                format);

            using (Mat bmpMat = new Mat(size.Height, size.Width, DepthType.Cv8U, numberOfChannels, data.Scan0,
                                        data.Stride))
                using (Mat dataMat = new Mat(size.Height, size.Width, CvInvoke.GetDepthType(srcDepthType), numberOfChannels,
                                             scan0, step))
                {
                    if (srcDepthType == typeof(Byte))
                    {
                        dataMat.CopyTo(bmpMat);
                    }
                    else
                    {
                        double scale = 1.0, shift = 0.0;
                        RangeF range = dataMat.GetValueRange();
                        if (range.Max > 255.0 || range.Min < 0)
                        {
                            scale = range.Max.Equals(range.Min) ? 0.0 : 255.0 / (range.Max - range.Min);
                            shift = scale.Equals(0) ? range.Min : -range.Min * scale;
                        }

                        CvInvoke.ConvertScaleAbs(dataMat, bmpMat, scale, shift);
                    }
                }

            bmp.UnlockBits(data);

            if (format == PixelFormat.Format8bppIndexed)
            {
                bmp.Palette = GrayscalePalette;
            }
            return(bmp);
        }
コード例 #29
0
ファイル: coreFunctions.cs プロジェクト: wassimea/ACF
        public void generateChannels(Image <Bgr, byte> img_original, string image_name, string destination_folder)
        {
            Directory.CreateDirectory(destination_folder);
            //string destination_folder = tbDestination.Text;
            img_original = img_original.SmoothGaussian(3);                               //smooth gaussian
            Image <Luv, byte> luv;                                                       //will contain luv image to extract LUV channels

            luv = img_original.Convert <Luv, byte>();                                    //convert from bgr to luv
            VectorOfUMat channels = new VectorOfUMat();                                  //contains luv channels

            CvInvoke.Split(luv, channels);                                               //split them
            Image <Gray, double> image_channel_L = channels[0].ToImage <Gray, double>(); //L channel

            image_channel_L = image_channel_L.SmoothGaussian(3);
            Image <Gray, double> image_channel_U = channels[1].ToImage <Gray, double>(); //U channel

            image_channel_U = image_channel_U.SmoothGaussian(3);
            Image <Gray, double> image_channel_V = channels[2].ToImage <Gray, double>();  //V channel

            image_channel_V = image_channel_V.SmoothGaussian(3);
            CvInvoke.Imwrite(@destination_folder + "__L.jpg", image_channel_L);
            CvInvoke.Imwrite(@destination_folder + "__U.jpg", image_channel_U);
            CvInvoke.Imwrite(@destination_folder + "__V.jpg", image_channel_V);

            Mat gray       = new Mat();                                                     //gray version of the original image
            Mat grad       = new Mat();                                                     //will contain the gradient magnitude
            Mat grad_x     = new Mat();                                                     //sobel x
            Mat grad_y     = new Mat();                                                     //sobel y
            Mat abs_grad_x = new Mat();                                                     //abs
            Mat abs_grad_y = new Mat();
            Mat angles     = new Mat();                                                     //matrix will contain the angle of every edge in grad magnitude channel

            CvInvoke.CvtColor(img_original, gray, Emgu.CV.CvEnum.ColorConversion.Bgr2Gray); //get gray image from bgr

            //channels defined below will contain the edges in different angles
            Image <Gray, UInt16> C1 = new Image <Gray, UInt16>(img_original.Cols, img_original.Rows);
            Image <Gray, UInt16> C2 = new Image <Gray, UInt16>(img_original.Cols, img_original.Rows);
            Image <Gray, UInt16> C3 = new Image <Gray, UInt16>(img_original.Cols, img_original.Rows);
            Image <Gray, UInt16> C4 = new Image <Gray, UInt16>(img_original.Cols, img_original.Rows);
            Image <Gray, UInt16> C5 = new Image <Gray, UInt16>(img_original.Cols, img_original.Rows);
            Image <Gray, UInt16> C6 = new Image <Gray, UInt16>(img_original.Cols, img_original.Rows);


            //apply sobel
            CvInvoke.Sobel(gray, grad_x, Emgu.CV.CvEnum.DepthType.Cv32F, 1, 0, 3);
            CvInvoke.ConvertScaleAbs(grad_x, abs_grad_x, 1, 0);
            CvInvoke.Sobel(gray, grad_y, Emgu.CV.CvEnum.DepthType.Cv32F, 0, 1, 3);
            CvInvoke.ConvertScaleAbs(grad_y, abs_grad_y, 1, 0);
            CvInvoke.AddWeighted(abs_grad_x, 0.5, abs_grad_y, 0.5, 0, grad);
            Image <Gray, UInt16> img_gradient = grad.ToImage <Gray, UInt16>();  //will store gradient magnitude as an image

            img_gradient = normalize(img_gradient);
            CvInvoke.Imwrite(@destination_folder + "__G.jpg", img_gradient);

            Emgu.CV.Cuda.CudaInvoke.Phase(grad_x, grad_y, angles, true);       //get angles
            Image <Gray, double> img_angles = angles.ToImage <Gray, double>(); //stores the angles as a gray image

            //loop through angles
            for (int i = 0; i < img_angles.Height; i++)
            {
                for (int j = 0; j < img_angles.Width; j++)
                {
                    double current_angle = img_angles.Data[i, j, 0];                         //current angle value in degrees
                    if (current_angle > 180)                                                 //if greater than 180
                    {
                        img_angles.Data[i, j, 0] = (double)(img_angles.Data[i, j, 0] - 180); //fix it
                    }
                    current_angle = img_angles.Data[i, j, 0];                                //update current value

                    //according to the value of the angle, add it to the corresponding channel
                    if (current_angle >= 0 && current_angle <= 30)
                    {
                        addEdgeToChannel(i, j, img_gradient.Data[i, j, 0], C1);
                    }
                    else if (current_angle > 30 && current_angle <= 60)
                    {
                        addEdgeToChannel(i, j, img_gradient.Data[i, j, 0], C2);
                    }
                    else if (current_angle > 60 && current_angle <= 90)
                    {
                        addEdgeToChannel(i, j, img_gradient.Data[i, j, 0], C3);
                    }
                    else if (current_angle > 90 && current_angle <= 120)
                    {
                        addEdgeToChannel(i, j, img_gradient.Data[i, j, 0], C4);
                    }
                    else if (current_angle > 120 && current_angle <= 150)
                    {
                        addEdgeToChannel(i, j, img_gradient.Data[i, j, 0], C5);
                    }
                    else if (current_angle > 150 && current_angle <= 180)
                    {
                        addEdgeToChannel(i, j, img_gradient.Data[i, j, 0], C6);
                    }
                }
            }

            //smooth channels
            C1 = C1.SmoothGaussian(3);
            C2 = C2.SmoothGaussian(3);
            C3 = C3.SmoothGaussian(3);
            C4 = C4.SmoothGaussian(3);
            C5 = C5.SmoothGaussian(3);
            C6 = C6.SmoothGaussian(3);
            CvInvoke.Imwrite(@destination_folder + "__C1.jpg", C1);
            CvInvoke.Imwrite(@destination_folder + "__C2.jpg", C2);
            CvInvoke.Imwrite(@destination_folder + "__C3.jpg", C3);
            CvInvoke.Imwrite(@destination_folder + "__C4.jpg", C4);
            CvInvoke.Imwrite(@destination_folder + "__C5.jpg", C5);
            CvInvoke.Imwrite(@destination_folder + "__C6.jpg", C6);
        }
コード例 #30
0
        public static void GetBarcodeFromImageEmgu(string fname, out string format, out string code)
        {
            Image <Bgr, Byte> orgimage = new Image <Bgr, byte>(fname);

            double scaleFactor = 1;

            if (orgimage.Height > 2048)
            {
                scaleFactor = 2048 / (double)orgimage.Height;
            }

            Image <Bgr, Byte> image = new Image <Bgr, byte>((int)(orgimage.Width * scaleFactor), (int)(orgimage.Height * scaleFactor));

            //image = cv2.resize(image, (0, 0), fx = scaleFactor, fy = scaleFactor, interpolation = cv2.INTER_AREA)
            CvInvoke.Resize(orgimage, image, new Size(0, 0), scaleFactor, scaleFactor, Inter.Area);

            orgimage.Dispose();


            UMat gray = new UMat();

            CvInvoke.CvtColor(image, gray, ColorConversion.Bgr2Gray);


            /*
             * gradX = cv2.Sobel(gray, ddepth = cv2.cv.CV_32F, dx = 1, dy = 0, ksize = -1)
             * gradY = cv2.Sobel(gray, ddepth = cv2.cv.CV_32F, dx = 0, dy = 1, ksize = -1)
             */
            UMat gradX = new UMat();
            UMat gradY = new UMat();

            CvInvoke.Sobel(gray, gradX, DepthType.Cv8U, 1, 0, -1);
            CvInvoke.Sobel(gray, gradY, DepthType.Cv8U, 0, 1, -1);

            gray.Dispose();

            //pictureBox1.Image = gradY.Bitmap;

            /*
             # subtract the y-gradient from the x-gradient
             # gradient = cv2.subtract(gradX, gradY)
             # gradient = cv2.convertScaleAbs(gradient)
             */
            UMat gradient = new UMat();

            CvInvoke.Subtract(gradX, gradY, gradient);
            CvInvoke.ConvertScaleAbs(gradient, gradient, 1, 0);

            gradX.Dispose();
            gradY.Dispose();

            //pictureBox1.Image = gradient.Bitmap;

            /*
             # blur and threshold the image
             # blurred = cv2.blur(gradient, (9, 9))
             # (_, thresh) = cv2.threshold(blurred, 225, 255, cv2.THRESH_BINARY)
             */
            UMat blurred = new UMat();
            UMat thresh  = new UMat();

            CvInvoke.Blur(gradient, blurred, new Size(9, 9), new Point(-1, -1));
            CvInvoke.Threshold(blurred, thresh, 88, 255, ThresholdType.Binary);

            //pictureBox1.Image= thresh.Bitmap;
            //return;

            /*
             # construct a closing kernel and apply it to the thresholded image
             # kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (21, 7))
             # closed = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel)
             */
            UMat closed = new UMat();
            var  kernel = CvInvoke.GetStructuringElement(ElementShape.Rectangle, new Size(21, 7), new Point(-1, -1));

            CvInvoke.MorphologyEx(thresh, closed, MorphOp.Close, kernel, new Point(-1, -1), 1, BorderType.Constant, CvInvoke.MorphologyDefaultBorderValue);

            blurred.Dispose();
            thresh.Dispose();



            //pictureBox1.Image= closed.Bitmap;
            //return;

            /*
             # perform a series of erosions and dilations
             # closed = cv2.erode(closed, None, iterations = 4)
             # closed = cv2.dilate(closed, None, iterations = 4)
             */
            UMat eroded  = new UMat();
            UMat dilated = new UMat();

            CvInvoke.Erode(closed, eroded, null, new Point(-1, -1), 4, BorderType.Constant, CvInvoke.MorphologyDefaultBorderValue);
            CvInvoke.Dilate(eroded, dilated, null, new Point(-1, -1), 4, BorderType.Constant, CvInvoke.MorphologyDefaultBorderValue);

            //pictureBox1.Image= dilated.Bitmap;
            //return;


            /*
             * (cnts, _) = cv2.findContours(closed.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
             * c = sorted(cnts, key = cv2.contourArea, reverse = True)[0]
             */

            VectorOfVectorOfPoint contours = new VectorOfVectorOfPoint();

            CvInvoke.FindContours(dilated, contours, null, RetrType.External, ChainApproxMethod.ChainApproxSimple);
            eroded.Dispose();
            dilated.Dispose();

            double largest_area          = 0;
            int    largest_contour_index = -1;

            for (int i = 0; i < contours.Size; i++)
            {
                var       rect   = CvInvoke.MinAreaRect(contours[i]);
                PointF[]  points = rect.GetVertices();
                Rectangle BBox   = GetBoundingBox(points);

                //Get largest bounding boxes that has width>height
                if (BBox.Width > BBox.Height)
                {
                    double a = CvInvoke.ContourArea(contours[i], false);
                    if (a > largest_area)
                    {
                        largest_area          = a;
                        largest_contour_index = i;
                    }
                }
            }

            //PointF[] points = rect.GetVertices();
            var ROIrect = CvInvoke.MinAreaRect(contours[largest_contour_index]);

            PointF[]  ROIpoints = ROIrect.GetVertices();
            Rectangle ROIBBox   = GetBoundingBox(ROIpoints);

            var extraWidth  = (int)(ROIBBox.Width * 0.2);
            var extraHeight = (int)(ROIBBox.Height * 0.2);

            ROIBBox.X -= extraWidth;
            ROIBBox.Y -= extraHeight;

            ROIBBox.Width  += extraWidth * 2;
            ROIBBox.Height += extraHeight * 2;

            Bitmap   ROIbmp = new Bitmap(ROIBBox.Width, ROIBBox.Height);
            Graphics g      = Graphics.FromImage(ROIbmp);

            g.DrawImage(image.ToBitmap(), 0, 0, ROIBBox, GraphicsUnit.Pixel);

            IBarcodeReader reader = new BarcodeReader();
            var            result = reader.Decode(ROIbmp);

            // do something with the result
            if (result != null)
            {
                format = result.BarcodeFormat.ToString();
                code   = result.Text;
            }
            else
            {
                format = "";
                code   = "";
            }

            //ROIbmp.Dispose();
            contours.Dispose();
            image.Dispose();
        }