/// <summary>
        ///     This function is used to query the amount of space required to store the states of the random number generators
        ///     used by cudnnDropoutForward function.
        /// </summary>
        public SizeT GetDropoutStateSize()
        {
            var sizeInBytes = new SizeT();
            var res         = CudaDNNNativeMethods.cudnnDropoutGetStatesSize(this.Handle, ref sizeInBytes);

            if (res != cudnnStatus.Success)
            {
                throw new CudaDNNException(res);
            }
            return(sizeInBytes);
        }
        /// <summary>
        ///     This function is used to query the amount of reserve needed to run dropout with the input dimensions given by
        ///     xDesc.
        ///     The same reserve space is expected to be passed to cudnnDropoutForward and cudnnDropoutBackward, and its contents
        ///     is
        ///     expected to remain unchanged between cudnnDropoutForward and cudnnDropoutBackward calls.
        /// </summary>
        /// <param name="xDesc">Handle to a previously initialized tensor descriptor, describing input to a dropout operation.</param>
        public SizeT GetDropoutReserveSpaceSize(TensorDescriptor xDesc)
        {
            var sizeInBytes = new SizeT();
            var res         = CudaDNNNativeMethods.cudnnDropoutGetReserveSpaceSize(xDesc.Desc, ref sizeInBytes);

            if (res != cudnnStatus.Success)
            {
                throw new CudaDNNException(res);
            }
            return(sizeInBytes);
        }
コード例 #3
0
        /// <summary>
        ///     This function is used to query the amount of space required to store the states of the random number generators
        ///     used by cudnnDropoutForward function.
        /// </summary>
        public SizeT GetDropoutStateSize()
        {
            var sizeInBytes = new SizeT();
            var res         = CudaDNNNativeMethods.cudnnDropoutGetStatesSize(this.Handle, ref sizeInBytes);

            //Debug.WriteLine("{0:G}, {1}: {2}", DateTime.Now, "cudnnDropoutGetStatesSize", res);
            if (res != cudnnStatus.Success)
            {
                throw new CudaDNNException(res);
            }
            return(sizeInBytes);
        }
コード例 #4
0
        /// <summary>
        ///     This function is used to query the amount of reserve needed to run dropout with the input dimensions given by
        ///     xDesc.
        ///     The same reserve space is expected to be passed to cudnnDropoutForward and cudnnDropoutBackward, and its contents
        ///     is
        ///     expected to remain unchanged between cudnnDropoutForward and cudnnDropoutBackward calls.
        /// </summary>
        /// <param name="xDesc">Handle to a previously initialized tensor descriptor, describing input to a dropout operation.</param>
        public SizeT GetDropoutReserveSpaceSize(TensorDescriptor xDesc)
        {
            var sizeInBytes = new SizeT();
            var res         = CudaDNNNativeMethods.cudnnDropoutGetReserveSpaceSize(xDesc.Desc, ref sizeInBytes);

            // Debug.WriteLine("{0:G}, {1}: {2}", DateTime.Now, "cudnnDropoutGetReserveSpaceSize", res);
            if (res != cudnnStatus.Success)
            {
                throw new CudaDNNException(res);
            }
            return(sizeInBytes);
        }
        /// <summary>
        ///     This function performs forward dropout operation over x returning results in y. If dropout was
        ///     used as a parameter to cudnnSetDropoutDescriptor, the approximately dropout fraction of x values
        ///     will be replaces by 0, and the rest will be scaled by 1/(1-dropout) This function should not be
        ///     running concurrently with another cudnnDropoutForward function using the same states.
        /// </summary>
        /// <param name="dropoutDesc">Handle to a previously created dropout descriptor object.</param>
        /// <param name="xDesc">Handle to the previously initialized input tensor descriptor.</param>
        /// <param name="x">Data pointer to GPU memory associated with the tensor descriptor srcDesc.</param>
        /// <param name="yDesc">Handle to the previously initialized output tensor descriptor.</param>
        /// <param name="y">Data pointer to GPU memory associated with the output tensor descriptor destDesc.</param>
        /// <param name="reserveSpace">
        ///     Data pointer to GPU memory used by this function. It is expected that contents of
        ///     reserveSpace doe not change between cudnnDropoutForward and cudnnDropoutBackward calls.
        /// </param>
        public void DropoutForward(DropoutDescriptor dropoutDesc,
                                   TensorDescriptor xDesc,
                                   CudaDeviceVariable <float> x,
                                   TensorDescriptor yDesc,
                                   CudaDeviceVariable <float> y,
                                   CudaDeviceVariable <byte> reserveSpace)
        {
            var res = CudaDNNNativeMethods.cudnnDropoutForward(this.Handle, dropoutDesc.Desc, xDesc.Desc, x.DevicePointer, yDesc.Desc, y.DevicePointer, reserveSpace.DevicePointer,
                                                               reserveSpace.SizeInBytes);

            if (res != cudnnStatus.Success)
            {
                throw new CudaDNNException(res);
            }
        }
コード例 #6
0
        /// <summary>
        ///     This function performs forward dropout operation over x returning results in y. If dropout was
        ///     used as a parameter to cudnnSetDropoutDescriptor, the approximately dropout fraction of x values
        ///     will be replaces by 0, and the rest will be scaled by 1/(1-dropout) This function should not be
        ///     running concurrently with another cudnnDropoutForward function using the same states.
        /// </summary>
        /// <param name="dropoutDesc">Handle to a previously created dropout descriptor object.</param>
        /// <param name="xDesc">Handle to the previously initialized input tensor descriptor.</param>
        /// <param name="x">Data pointer to GPU memory associated with the tensor descriptor srcDesc.</param>
        /// <param name="yDesc">Handle to the previously initialized output tensor descriptor.</param>
        /// <param name="y">Data pointer to GPU memory associated with the output tensor descriptor destDesc.</param>
        /// <param name="reserveSpace">
        ///     Data pointer to GPU memory used by this function. It is expected that contents of
        ///     reserveSpace doe not change between cudnnDropoutForward and cudnnDropoutBackward calls.
        /// </param>
        public void DropoutForward(DropoutDescriptor dropoutDesc,
                                   TensorDescriptor xDesc,
                                   CudaDeviceVariable <double> x,
                                   TensorDescriptor yDesc,
                                   CudaDeviceVariable <double> y,
                                   CudaDeviceVariable <byte> reserveSpace)
        {
            var res = CudaDNNNativeMethods.cudnnDropoutForward(this.Handle, dropoutDesc.Desc, xDesc.Desc, x.DevicePointer, yDesc.Desc, y.DevicePointer, reserveSpace.DevicePointer,
                                                               reserveSpace.SizeInBytes);

            //Debug.WriteLine("{0:G}, {1}: {2}", DateTime.Now, "cudnnDropoutForward", res);
            if (res != cudnnStatus.Success)
            {
                throw new CudaDNNException(res);
            }
        }
コード例 #7
0
        public override void DoMultiply(Volume <float> right, Volume <float> result)
        {
            var resultStorage = result.Storage as VolumeStorage;

            if (resultStorage == null)
            {
                throw new ArgumentException($"{nameof(result)} storage should be VolumeStorage", nameof(result));
            }

            var rightStorage = right.Storage as VolumeStorage;

            if (rightStorage == null)
            {
                throw new ArgumentException($"{nameof(right)} storage should be VolumeStorage", nameof(right));
            }

            // Copy to device if not already done
            this._volumeStorage.CopyToDevice();
            rightStorage.CopyToDevice();
            resultStorage.CopyToDevice();

            var aStorage = this._volumeStorage;
            var bStorage = rightStorage;

            if (bStorage.Shape.TotalLength > aStorage.Shape.TotalLength)
            {
                aStorage = rightStorage;
                bStorage = this._volumeStorage;
            }
            var bShape = bStorage.Shape;

            var n = aStorage.Shape.GetDimension(3);
            var c = aStorage.Shape.GetDimension(2);
            var h = aStorage.Shape.GetDimension(1);
            var w = aStorage.Shape.GetDimension(0);

            // Add tensors
            using (var descA = new TensorDescriptor())
                using (var descB = new TensorDescriptor())
                    using (var descC = new TensorDescriptor())
                    {
                        descA.SetTensor4dDescriptor(cudnnTensorFormat.NCHW, cudnnDataType.Float, n, c, h, w);
                        descB.SetTensor4dDescriptor(cudnnTensorFormat.NCHW, cudnnDataType.Float, bShape.GetDimension(3), bShape.GetDimension(2), bShape.GetDimension(1),
                                                    bShape.GetDimension(0));
                        descC.SetTensor4dDescriptor(cudnnTensorFormat.NCHW, cudnnDataType.Float, n, c, h, w);

                        using (var opt = new OpTensorDescriptor(this._context.CudnnContext))
                        {
                            opt.SetOpTensorDescriptor(
                                cudnnOpTensorOp.OpTensorMul,
                                cudnnDataType.Float,
                                cudnnNanPropagation.PropagateNan);

                            var one  = 1.0f;
                            var zero = 0.0f;

                            var status = CudaDNNNativeMethods.cudnnOpTensor(
                                this._context.CudnnContext.Handle,
                                opt.Desc,
                                ref one, descA.Desc, aStorage.DeviceBuffer.DevicePointer,
                                ref one, descB.Desc, bStorage.DeviceBuffer.DevicePointer,
                                ref zero, descC.Desc, resultStorage.DeviceBuffer.DevicePointer);

                            if (status != cudnnStatus.Success)
                            {
                                throw new Exception(CudaDNNNativeMethods.cudnnGetErrorString(status));
                            }

                            resultStorage.Location = DataLocation.Device;
                        }
                    }
        }
コード例 #8
0
ファイル: Volume.cs プロジェクト: NSqda/XCoinTrader
        private void Op(Volume <double> right, cudnnOpTensorOp op, Volume <double> result)
        {
            var resultStorage = result.Storage as VolumeStorage;

            if (resultStorage == null)
            {
                throw new ArgumentException($"{nameof(result)} storage should be VolumeStorage", nameof(result));
            }

            VolumeStorage rightStorage = null;

            if (right != null)
            {
                rightStorage = right.Storage as VolumeStorage;
                if (rightStorage == null)
                {
                    throw new ArgumentException($"{nameof(right)} storage should be VolumeStorage", nameof(right));
                }
            }

            // Copy to device if not already done
            this._volumeStorage.CopyToDevice();
            rightStorage?.CopyToDevice();
            resultStorage.CopyToDevice();

            var           aStorage = this._volumeStorage;
            Shape         bShape   = null;
            VolumeStorage bStorage = null;

            if (rightStorage != null)
            {
                bStorage = rightStorage;
                if (bStorage.Shape.TotalLength > aStorage.Shape.TotalLength)
                {
                    aStorage = rightStorage;
                    bStorage = this._volumeStorage;
                }

                bShape = bStorage.Shape;
            }

            var n = aStorage.Shape.Dimensions[3];
            var c = aStorage.Shape.Dimensions[2];
            var h = aStorage.Shape.Dimensions[1];
            var w = aStorage.Shape.Dimensions[0];

            // Add tensors
            using var descA = new TensorDescriptor();
            using var descB = new TensorDescriptor();
            using var descC = new TensorDescriptor();

            descA.SetTensor4dDescriptor(cudnnTensorFormat.NCHW, cudnnDataType.Double, n, c, h, w);
            if (bShape != null)
            {
                descB.SetTensor4dDescriptor(cudnnTensorFormat.NCHW, cudnnDataType.Double, bShape.Dimensions[3], bShape.Dimensions[2], bShape.Dimensions[1],
                                            bShape.Dimensions[0]);
            }

            descC.SetTensor4dDescriptor(cudnnTensorFormat.NCHW, cudnnDataType.Double, n, c, h, w);

            using var opt = new OpTensorDescriptor(this._context.CudnnContext);

            opt.SetOpTensorDescriptor(
                op,
                cudnnDataType.Double,
                cudnnNanPropagation.PropagateNan);

            var one  = 1.0;
            var zero = 0.0;

            var status = CudaDNNNativeMethods.cudnnOpTensor(
                this._context.CudnnContext.Handle,
                opt.Desc,
                ref one, descA.Desc, aStorage.DeviceBuffer.DevicePointer,
                ref one, bStorage != null ? descB.Desc : descA.Desc, bStorage?.DeviceBuffer.DevicePointer ?? aStorage.DeviceBuffer.DevicePointer,
                ref zero, descC.Desc, resultStorage.DeviceBuffer.DevicePointer);

            if (status != cudnnStatus.Success)
            {
                throw new Exception(CudaDNNNativeMethods.cudnnGetErrorString(status));
            }

            resultStorage.Location = DataLocation.Device;
        }