コード例 #1
0
        private double CountWaveFunctions(double e)
        {
            InitSystems(e);

            _t   = new double[_nodesCount];
            _psi = new double[_nodesCount];
            _phi = new double[_nodesCount];

            var solver      = new Solver(_systemForward, -_l, _conditionValuesForward, _h, _nodesCount);
            var solutionPsi = solver.Solve();

            for (int i = 0; i < _nodesCount; i++)
            {
                _t[i]   = solutionPsi[i][0];
                _psi[i] = solutionPsi[i][2];
            }

            solver = new Solver(_systemBackward, _l, _conditionValuesBackward, -_h, _nodesCount);
            var solutionFi = solver.Solve();

            for (int i = 0; i < _nodesCount; i++)
            {
                _phi[i] = solutionFi[_nodesCount - 1 - i][2];
            }

            Scale(_psi);
            NormalizeMath();
            NormalizeQuant();

            _psiSpline = CubicSpline.InterpolateAkima(_t, _psi);
            _phiSpline = CubicSpline.InterpolateAkima(_t, _phi);

            return(_psiSpline.Differentiate(_t[_sewNode]) - _phiSpline.Differentiate(_t[_sewNode]));
        }
コード例 #2
0
        public void FitsAtArbitraryPoints(double t, double x, double maxAbsoluteError)
        {
            IInterpolation it = CubicSpline.InterpolateAkima(_t, _y);

            // TODO: Verify the expected values (that they are really the expected ones)
            Assert.AreEqual(x, it.Interpolate(t), maxAbsoluteError, "Interpolation at {0}", t);
        }
コード例 #3
0
ファイル: Timeline.cs プロジェクト: bntre/cs-rationals
            protected void UpdateInterpolation()
            {
                int count = _keyFrames.Count;
                var xs    = new double[count];
                var ys    = new double[count];

                for (int i = 0; i < count; ++i)
                {
                    xs[i] = (double)_keyFrames[i].time;
                    ys[i] = (double)_keyFrames[i].value;
                }
                if (count <= 1)
                {
                    _interpolation = StepInterpolation.Interpolate(xs, ys);
                }
                else if (count <= 2)
                {
                    _interpolation = LinearSpline.Interpolate(xs, ys);
                }
                else if (count <= 3)
                {
                    _interpolation = MathNet.Numerics.Interpolate.Polynomial(xs, ys);
                }
                else if (count <= 4)
                {
                    _interpolation = CubicSpline.InterpolateNatural(xs, ys);
                }
                else
                {
                    _interpolation = CubicSpline.InterpolateAkima(xs, ys);
                }
            }
コード例 #4
0
        public void FitsAtSamplePoints()
        {
            IInterpolation it = CubicSpline.InterpolateAkima(_t, _y);

            for (int i = 0; i < _y.Length; i++)
            {
                Assert.AreEqual(_y[i], it.Interpolate(_t[i]), "A Exact Point " + i);
            }
        }
コード例 #5
0
        private double CountXSquareQuantAvg()
        {
            for (var i = 0; i < _nodesCount; i++)
            {
                _xQuantAvg[i] = _psi[i] * _t[i] * _t[i] * _psi[i];
            }
            var xQiantAvgSpline = CubicSpline.InterpolateAkima(_t, _xQuantAvg);

            return(xQiantAvgSpline.Integrate(-_l, _l));
        }
コード例 #6
0
        public void SupportsLinearCase(int samples)
        {
            double[] x, y, xtest, ytest;
            LinearInterpolationCase.Build(out x, out y, out xtest, out ytest, samples);
            IInterpolation it = CubicSpline.InterpolateAkima(x, y);

            for (int i = 0; i < xtest.Length; i++)
            {
                Assert.AreEqual(ytest[i], it.Interpolate(xtest[i]), 1e-15, "Linear with {0} samples, sample {1}", samples, i);
            }
        }
コード例 #7
0
        public void InterpolateCurveAkima() // generates a smoother version of the random curve
        {
            List <SensitivityPoint> smoothCurve = new List <SensitivityPoint>();

            double[]    timestamp   = sensCurve.Select(sensCurve => sensCurve.timeStamp).ToArray();
            double[]    randomsense = sensCurve.Select(sensCurve => sensCurve.sensitivity).ToArray();
            CubicSpline spline      = CubicSpline.InterpolateAkima(timestamp, randomsense);

            for (double timecode = 0; timecode < this.lenght; timecode += timestep)
            {
                SensitivityPoint sensPoint = new SensitivityPoint(timecode, spline.Interpolate(timecode));
                smoothCurve.Add(sensPoint);
            }
            sensCurve = smoothCurve;
        }
コード例 #8
0
        private double GetProbalilityDensity(double[] function)
        {
            var functionSquare = new double[_nodesCount];

            for (var i = 0; i < _nodesCount; i++)
            {
                functionSquare[i] = function[i] * function[i];
            }

            var functionSquareSpline = CubicSpline.InterpolateAkima(_t, functionSquare);

            var x = functionSquareSpline.Integrate(-_l, _l);

            return(functionSquareSpline.Integrate(-_l, _l));
        }
コード例 #9
0
        protected Func <double, double> CreatePolynom(int index)
        {
            if (points[index].Count == 0)
            {
                points[index].Add(new DataPoint(currMin, 1));
                points[index].Add(new DataPoint(currMax, 1));
            }
            DataPoint[] currPoints = points[index].ToArray();
            double[,] coeffs = new double[currPoints.Length, 2];
            List <double>         xv     = new List <double>();
            List <double>         yv     = new List <double>();
            Func <double, double> linear = CreateLinear(index);

            for (int i = 0; i < currPoints.Length; i++)
            {
                xv.Add(currPoints[i].XValue);
                yv.Add(currPoints[i].YValues[0]);
                coeffs[i, 0] = currPoints[i].XValue;
                coeffs[i, 1] = currPoints[i].YValues[0];
            }
            Random rnd = new Random();

            while (xv.Count < 5)
            {
                int    i = rnd.Next(xv.Count - 1);
                int    j = i + 1;
                double x = (xv[i] + xv[j]) / 2;
                yv.Insert(j, linear(x));
                xv.Insert(j, x);
            }
            var akima = CubicSpline.InterpolateAkima(xv, yv);

            return((x) =>
            {
                double res = akima.Interpolate(x);
                if (res < 0)
                {
                    return 0;
                }
                if (res > 1)
                {
                    return 1;
                }
                return res;
            });
        }
コード例 #10
0
        /// <summary>
        /// Run example
        /// </summary>
        /// <seealso cref="http://en.wikipedia.org/wiki/Spline_interpolation">Spline interpolation</seealso>
        public void Run()
        {
            // 1. Generate 10 samples of the function x*x-2*x on interval [0, 10]
            Console.WriteLine(@"1. Generate 10 samples of the function x*x-2*x on interval [0, 10]");
            double[] points = Generate.LinearSpaced(10, 0, 10);
            var      values = Generate.Map(points, TargetFunction);

            Console.WriteLine();

            // 2. Create akima spline interpolation
            var method = CubicSpline.InterpolateAkima(points, values);

            Console.WriteLine(@"2. Create akima spline interpolation based on arbitrary points");
            Console.WriteLine();

            // 3. Check if interpolation support integration
            Console.WriteLine(@"3. Support integration = {0}", ((IInterpolation)method).SupportsIntegration);
            Console.WriteLine();

            // 4. Check if interpolation support differentiation
            Console.WriteLine(@"4. Support differentiation = {0}", ((IInterpolation)method).SupportsDifferentiation);
            Console.WriteLine();

            // 5. Differentiate at point 5.2
            Console.WriteLine(@"5. Differentiate at point 5.2 = {0}", method.Differentiate(5.2));
            Console.WriteLine();

            // 6. Integrate at point 5.2
            Console.WriteLine(@"6. Integrate at point 5.2 = {0}", method.Integrate(5.2));
            Console.WriteLine();

            // 7. Interpolate ten random points and compare to function results
            Console.WriteLine(@"7. Interpolate ten random points and compare to function results");
            var rng = new MersenneTwister(1);

            for (var i = 0; i < 10; i++)
            {
                // Generate random value from [0, 10]
                var point = rng.NextDouble() * 10;
                Console.WriteLine(@"Interpolate at {0} = {1}. Function({0}) = {2}", point.ToString("N05"), method.Interpolate(point).ToString("N05"), TargetFunction(point).ToString("N05"));
            }

            Console.WriteLine();
        }
コード例 #11
0
        /// <summary>
        /// Строит функция принадлежности в виде сплайна Акимы.
        /// </summary>
        /// <param name="points">Список точек для построения сплайна.</param>
        protected void InitializeAkima(List <KeyValuePair <double, double> > points)
        {
            var ordered = points.OrderBy((p) => p.Key).ToList();
            var akima   = CubicSpline.InterpolateAkima(ordered.Select((p) => p.Key),
                                                       ordered.Select((p) => p.Value));

            function = (x) =>
            {
                double res = akima.Interpolate(x[0]);
                if (res < 0)
                {
                    return(0);
                }
                if (res > 1)
                {
                    return(1);
                }
                return(res);
            };
        }
コード例 #12
0
    private static IReadOnlyCollection <DataPoint> GeneratePointsFromBitmap(Stream stream)
    {
        const double fmax       = 19000.0;
        const double fmin       = 20.0;
        const double dbrange    = 16.0;
        const double dbmax      = 1.0;
        const double sampleRate = 48000.0;
        const int    sampleSize = 16384;

        // Create a Bitmap object from an image file.
        using var iBitmap = new Bitmap(stream);
        //using var oBitmap = new Bitmap(iBitmap.Width, iBitmap.Height);

        var first = 0;
        //var last = 0;
        double min = iBitmap.Height;
        double max = 0;

        // Get the color of a pixel within myBitmap.
        var points = new Collection <KeyValuePair <int, double> >();

        for (var x = 0; x < iBitmap.Width; x++)
        {
            var list = new List <int>();
            for (var y = 0; y < iBitmap.Height; y++)
            {
                var pixelColor = iBitmap.GetPixel(x, y);
                if ((pixelColor.R > 200) && (pixelColor.G < 25) && (pixelColor.B < 25))
                {
                    if (first == 0)
                    {
                        first = x;
                    }
                    //else last = x;
                    //oBitmap.SetPixel(x, y, Color.FromArgb(255, 0, 0));
                    list.Add(y);
                }
            }
            if (list.Count > 0)
            {
                var a = iBitmap.Height - list.Average();
                points.Add(new KeyValuePair <int, double>(x, a));
                if (a < min)
                {
                    min = a;
                }

                if (a > max)
                {
                    max = a;
                }
            }
        }

        //var size = last - first + 1;
        var mag = max - min + 1;

        //calculate gain & offset
        var scale = dbrange / mag;
        var shift = dbmax - max * scale;

        //check
        //var n_min = min * scale + shift;
        //var n_max = max * scale + shift;

        //convert bitmap to frequency spectrum
        var ex = new List <double>();
        var ey = new List <double>();

        for (var x = 0; x < points.Count; x++)
        {
            var df = Math.Log10(fmax / fmin);                      //over aproximately 3 decades
            var f  = 20.0 * Math.Pow(10.0, df * x / points.Count); //convert log horizontal image pixels to linear frequency scale in Hz
            var y  = points[x].Value * scale + shift;              //scale and shift vertical image pixels to correct magnitude in dB

            ex.Add(f);
            ey.Add(Math.Pow(10.0, y / 20.0));
        }

        //interpolate frequency spectrum to match Audyssey responseData length
        var frequency       = Enumerable.Range(0, sampleSize).Select(p => p * sampleRate / sampleSize).ToArray();
        var spline          = CubicSpline.InterpolateAkima(ex, ey);
        var frequencyPoints = new List <DataPoint>();

        foreach (var f in frequency)
        {
            if (f < fmin)
            {   // exptrapolate
                frequencyPoints.Add(new DataPoint(f, double.NegativeInfinity));
            }
            else
            {
                frequencyPoints.Add(f > fmax
                    ? new DataPoint(f, double.NegativeInfinity)
                    : new DataPoint(f, 20 * Math.Log10(spline.Interpolate(f))));
            }
        }

        //oBitmap.Save(Path.ChangeExtension(path, "jpg"), System.Drawing.Imaging.ImageFormat.Jpeg);

        return(frequencyPoints);
    }
コード例 #13
0
        private TradingRecommendation GetTradingRecommendationForCrossOver()
        {
            int[] Intervals = { 50, 200 };
            TradingRecommendation Recommendation      = new TradingRecommendation();
            List <double[]>       MovingAverageObject = new List <double[]>();


            List <double> d1 = Statistics.MovingAverage(
                GetBusinessDayDataForRange(DateTime.Now, Intervals[0]).
                Select(s => Convert.ToDouble(s.Close)).ToArray(), Intervals[0]).ToList();
            List <double> d2 = Statistics.MovingAverage(
                GetBusinessDayDataForRange(DateTime.Now, Intervals[1]).
                Select(s => Convert.ToDouble(s.Close)).ToArray(), Intervals[1]).ToList();

            double[] xd = d1.ToArray();
            double[] yd = d2.Skip(d2.Count() - d1.Count()).ToArray();

            CubicSpline Curvedata = CubicSpline.InterpolateAkima(
                d1.Select((s, i2) => new { i2, s })
                .Select(t => Convert.ToDouble(t.i2)).ToArray(),
                d1);


            while (d1.Count() != d2.Count())
            {
                if (d1.Count() > d2.Count())
                {
                    d2.Insert(0, 0);
                }
                else
                {
                    d1.Insert(0, 0);
                }
            }

            double[] intersects0 = Polyfit(xd, yd, 0);


            List <Tuple <int, double> > Intersects = new List <Tuple <int, double> >();
            int i = 0;

            foreach (double di in yd)
            {
                if (di * 0.999 <= intersects0[0] && di * 1.001 >= intersects0[0])
                {
                    Intersects.Add(new Tuple <int, double>(i, di));
                }
                i++;
            }


            /*
             *
             *
             * CubicSpline Curvedata = CubicSpline.InterpolateAkima(
             * d1.Select((s, i2) => new { i2, s })
             * .Select(t => Convert.ToDouble(t.i2)).ToArray(),
             * d1);
             *
             *
             * while (d1.Count() != d2.Count())
             * {
             *  if (d1.Count() > d2.Count())
             *  {
             *      d2.Insert(0, double.NaN);
             *  }
             *  else
             *  {
             *      d1.Insert(0, double.NaN);
             *  }
             * }
             * List<Tuple<int, double>> Intersects = new List<Tuple<int, double>>();
             * int i = 0;
             * foreach (double di in d1)
             * {
             *  //need to add a little bit of gliding here as well...
             *  if (!double.IsNaN(di) && !double.IsNaN(d2[i]) && (di <= d2[i]*0.92 && di >= d2[i] * 1.07))
             *  {
             *      Intersects.Add(new Tuple<int, double>(i, di));
             *  }
             *  i++;
             * }*/
            try
            {
                int Sellmax = (Intersects.Where(x => Curvedata.Differentiate(x.Item2) < 0).Count() > 0) ? Intersects.Where(x => Curvedata.Differentiate(x.Item2) < 0).Last().Item1 : 0;
                int Buymax  = (Intersects.Where(x => Curvedata.Differentiate(x.Item2) > 0).Count() > 0) ? Intersects.Where(x => Curvedata.Differentiate(x.Item2) > 0).Last().Item1 : 0;

                if (Sellmax > Buymax && Sellmax > 0)
                {
                    return(new TradingRecommendation(
                               Instrument,
                               ImperaturGlobal.GetMoney(0, Instrument.CurrencyCode),
                               ImperaturGlobal.GetMoney(Convert.ToDecimal(Intersects.Where(x => x.Item1.Equals(Sellmax)).Last().Item2), Instrument.CurrencyCode),
                               DateTime.Now,
                               DateTime.Now,
                               TradingForecastMethod.Crossover
                               ));
                }
                if (Buymax > Sellmax && Buymax > 0)
                {
                    return(new TradingRecommendation(
                               Instrument,
                               ImperaturGlobal.GetMoney(Convert.ToDecimal(Intersects.Where(x => x.Item1.Equals(Buymax)).Last().Item2), Instrument.CurrencyCode),
                               ImperaturGlobal.GetMoney(0, Instrument.CurrencyCode),
                               DateTime.Now,
                               DateTime.Now,
                               TradingForecastMethod.Crossover
                               ));
                }
            }
            catch (Exception ex)
            {
                int gg = 0;
            }

            return(Recommendation);
        }
        public void LoadTrajectory(com.robotraconteur.robotics.trajectory.JointTrajectory traj, double speed_ratio)
        {
            if (traj.joint_names.Count > 0)
            {
                if (!Enumerable.SequenceEqual(traj.joint_names, joint_names))
                {
                    throw new ArgumentException("Joint names in trajectory must match robot joint names");
                }
            }

            if (traj.waypoints == null)
            {
                throw new ArgumentException("Waypoint list must not be null");
            }

            if (traj.waypoints.Count < 5)
            {
                throw new ArgumentException("Waypoint list must contain five or more waypoints");
            }

            if (traj.waypoints[0].time_from_start != 0)
            {
                throw new ArgumentException("Trajectory time_from_start must equal zero for first waypoint");
            }

            if (traj.interpolation_mode != com.robotraconteur.robotics.trajectory.InterpolationMode.default_ &&
                traj.interpolation_mode != com.robotraconteur.robotics.trajectory.InterpolationMode.cubic_spline)
            {
                throw new ArgumentException($"Only default and cubic_spline interpolation supported for trajectory execution");
            }

            int n_waypoints = traj.waypoints.Count;
            int n_joints    = joint_names.Length;

            var             traj_t = new double[n_waypoints];
            List <double[]> traj_j = Enumerable.Range(1, n_joints).Select(i => new double[n_waypoints]).ToList();

            double last_t = 0;

            for (int i = 0; i < n_waypoints; i++)
            {
                var w = traj.waypoints[i];

                if (w.joint_position.Length != n_joints)
                {
                    throw new ArgumentException($"Waypoint {i} invalid joint array length");
                }

                if (w.joint_velocity.Length != n_joints && w.joint_velocity.Length != 0)
                {
                    throw new ArgumentException($"Waypoint {i} invalid joint velocity array length");
                }

                if (w.position_tolerance.Length != n_joints && w.position_tolerance.Length != 0)
                {
                    throw new ArgumentException($"Waypoint {i} invalid tolerance array length");
                }

                if (w.velocity_tolerance.Length != n_joints && w.velocity_tolerance.Length != 0)
                {
                    throw new ArgumentException($"Waypoint {i} invalid tolerance array length");
                }

                if (i > 0)
                {
                    if (w.time_from_start / speed_ratio <= last_t)
                    {
                        throw new ArgumentException("time_from_start must be increasing");
                    }
                }

                for (int j = 0; j < n_joints; j++)
                {
                    if (w.joint_position[j] > joint_max[j] || w.joint_position[j] < joint_min[j])
                    {
                        throw new ArgumentException($"Waypoint {i} exceeds joint limits");
                    }

                    if (w.joint_velocity.Length > 0)
                    {
                        if (Math.Abs(w.joint_velocity[j] * speed_ratio) > joint_vel_max[j])
                        {
                            throw new ArgumentException($"Waypoint {i} exceeds joint velocity limits");
                        }
                    }
                }

                if (i > 0)
                {
                    var    last_w = traj.waypoints[i - 1];
                    double dt     = w.time_from_start / speed_ratio - last_w.time_from_start / speed_ratio;

                    for (int j = 0; j < n_joints; j++)
                    {
                        double dj = Math.Abs(w.joint_position[j] - last_w.joint_position[j]);
                        if (dj / dt > joint_vel_max[j])
                        {
                            throw new ArgumentException($"Waypoint {i} exceeds joint velocity limits");
                        }
                    }
                }

                traj_t[i] = w.time_from_start / speed_ratio;
                for (int j = 0; j < n_joints; j++)
                {
                    traj_j[j][i] = w.joint_position[j];
                }

                last_t = w.time_from_start / speed_ratio;
            }

            joint_splines = traj_j.Select(x => CubicSpline.InterpolateAkima(traj_t, x)).ToList();
            max_t         = last_t;

            joint_start    = traj.waypoints[0].joint_position;
            joint_end      = traj.waypoints.Last().joint_position;
            waypoint_times = traj_t;
        }
コード例 #15
0
        public Collection <DataPoint> GeneratePointsFromBitmap(string filename)
        {
            filename = Path.ChangeExtension(filename, "png");
            if (File.Exists(filename))
            {
                double fmax    = 19000.0;
                double fmin    = 20.0;
                double dbrange = 16.0;
                double dbmax   = 1;

                double sampleRate = 48000;
                int    sampleSize = 16384;

                // Create a Bitmap object from an image file.
                Bitmap iBitmap = new Bitmap(filename);
                Bitmap oBitmap = new Bitmap(iBitmap.Width, iBitmap.Height);

                int    first = 0;
                int    last  = 0;
                int    size  = 0;
                double min   = iBitmap.Height;
                double max   = 0;
                double mag   = 0;

                // Get the color of a pixel within myBitmap.
                Collection <KeyValuePair <int, double> > points = new Collection <KeyValuePair <int, double> >();
                for (var x = 0; x < iBitmap.Width; x++)
                {
                    List <int> list = new List <int>();
                    for (var y = 0; y < iBitmap.Height; y++)
                    {
                        Color pixelColor = iBitmap.GetPixel(x, y);
                        if ((pixelColor.R > 200) && (pixelColor.G < 25) && (pixelColor.B < 25))
                        {
                            if (first == 0)
                            {
                                first = x;
                            }
                            else
                            {
                                last = x;
                            }
                            oBitmap.SetPixel(x, y, Color.FromArgb(255, 0, 0));
                            list.Add(y);
                        }
                    }
                    if (list.Count > 0)
                    {
                        var a = iBitmap.Height - list.Average();
                        points.Add(new KeyValuePair <int, double>(x, a));
                        if (a < min)
                        {
                            min = a;
                        }
                        if (a > max)
                        {
                            max = a;
                        }
                    }
                }

                size = last - first + 1;
                mag  = max - min + 1;

                //calculate gain & offset
                double scale = dbrange / mag;
                double shift = dbmax - max * scale;

                //check
                double n_min = min * scale + shift;
                double n_max = max * scale + shift;

                //convert bitmap to frequency spectrum
                Collection <double> ex = new Collection <double>();
                Collection <double> ey = new Collection <double>();
                for (var x = 0; x < points.Count; x++)
                {
                    double df = Math.Log10(fmax / fmin);                      //over aproximately 3 decades
                    double f  = 20.0 * Math.Pow(10.0, df * x / points.Count); //convert log horizontal image pixels to linear frequency scale in Hz
                    double y  = points[x].Value * scale + shift;              //scale and shift vertical image pixels to correct magnitude in dB

                    ex.Add(f);
                    ey.Add(Math.Pow(10.0, y / 20.0));
                }

                //interpolate frequency spectrum to match Audyssey responseData length
                double[]               frequency        = Enumerable.Range(0, sampleSize).Select(p => p * sampleRate / sampleSize).ToArray();
                CubicSpline            IA               = CubicSpline.InterpolateAkima(ex, ey);
                Collection <DataPoint> frequency_points = new Collection <DataPoint>();
                foreach (var f in frequency)
                {
                    if (f < fmin)
                    {   // exptrapolate
                        frequency_points.Add(new DataPoint(f, double.NegativeInfinity));
                    }
                    else
                    {
                        if (f > fmax)
                        {   // exptrapolate
                            frequency_points.Add(new DataPoint(f, double.NegativeInfinity));
                        }
                        else
                        {   //interpolate
                            frequency_points.Add(new DataPoint(f, 20 * Math.Log10(IA.Interpolate(f))));
                        }
                    }
                }

                oBitmap.Save(Path.ChangeExtension(filename, "jpg"), System.Drawing.Imaging.ImageFormat.Jpeg);

                return(frequency_points);
            }
            else
            {
                return(null);
            }
        }
コード例 #16
0
 public void FewSamples()
 {
     Assert.That(() => CubicSpline.InterpolateAkima(new double[0], new double[0]), Throws.ArgumentException);
     Assert.That(() => CubicSpline.InterpolateAkima(new double[4], new double[4]), Throws.ArgumentException);
     Assert.That(CubicSpline.InterpolateAkima(new[] { 1.0, 2.0, 3.0, 4.0, 5.0 }, new[] { 2.0, 2.0, 2.0, 2.0, 2.0 }).Interpolate(1.0), Is.EqualTo(2.0));
 }
コード例 #17
0
 public virtual double Interpolate_CubicSpline(double[] x, double[] y, double xValue)
 {
     return(CubicSpline.InterpolateAkima(x, y).Interpolate(xValue));
 }
コード例 #18
0
        public override void ExecuteExample()
        {
            MathDisplay.WriteLine("<b>Linear interpolation between points</b>");

            // 1. Generate 20 samples of the function x*x-2*x on interval [0, 10]
            MathDisplay.WriteLine(@"1. Generate 20 samples of the function x*x-2*x on interval [0, 10]");
            double[] points = Generate.LinearSpaced(20, 0, 10);
            var      values = Generate.Map <double, double>(points, TargetFunction1);

            MathDisplay.WriteLine();

            // 2. Create a linear spline interpolation based on arbitrary points
            var method = Interpolate.Linear(points, values);

            MathDisplay.WriteLine(@"2. Create a linear spline interpolation based on arbitrary points");
            MathDisplay.WriteLine();

            // 3. Check if interpolation support integration
            MathDisplay.WriteLine(@"3. Support integration = {0}", method.SupportsIntegration);
            MathDisplay.WriteLine();

            // 4. Check if interpolation support differentiation
            MathDisplay.WriteLine(@"4. Support differentiation = {0}", method.SupportsDifferentiation);
            MathDisplay.WriteLine();

            // 5. Differentiate at point 5.2
            MathDisplay.WriteLine(@"5. Differentiate at point 5.2 = {0}", method.Differentiate(5.2));
            MathDisplay.WriteLine();

            // 6. Integrate at point 5.2
            MathDisplay.WriteLine(@"6. Integrate at point 5.2 = {0}", method.Integrate(5.2));
            MathDisplay.WriteLine();

            // 7. Interpolate ten random points and compare to function results
            MathDisplay.WriteLine(@"7. Interpolate ten random points and compare to function results");
            var rng = new MersenneTwister(1);

            for (var i = 0; i < 10; i++)
            {
                // Generate random value from [0, 10]
                var point = rng.NextDouble() * 10;
                MathDisplay.WriteLine(
                    @"Interpolate at {0} = {1}. Function({0}) = {2}",
                    point.ToString("N05"),
                    method.Interpolate(point).ToString("N05"),
                    TargetFunction1(point).ToString("N05"));
            }

            MathDisplay.WriteLine();


            // <seealso cref="http://en.wikipedia.org/wiki/Spline_interpolation">Spline interpolation</seealso>
            MathDisplay.WriteLine("<b>Akima spline interpolation</b>");

            // 1. Generate 10 samples of the function x*x-2*x on interval [0, 10]
            MathDisplay.WriteLine(@"1. Generate 10 samples of the function x*x-2*x on interval [0, 10]");
            points = Generate.LinearSpaced(10, 0, 10);
            values = Generate.Map <double, double>(points, TargetFunction1);
            MathDisplay.WriteLine();

            // 2. Create akima spline interpolation
            method = CubicSpline.InterpolateAkima(points, values);
            MathDisplay.WriteLine(@"2. Create akima spline interpolation based on arbitrary points");
            MathDisplay.WriteLine();

            // 3. Check if interpolation supports integration
            MathDisplay.WriteLine(@"3. Support integration = {0}", ((IInterpolation)method).SupportsIntegration);
            MathDisplay.WriteLine();

            // 4. Check if interpolation support differentiation
            MathDisplay.WriteLine(@"4. Support differentiation = {0}", ((IInterpolation)method).SupportsDifferentiation);
            MathDisplay.WriteLine();

            // 5. Differentiate at point 5.2
            MathDisplay.WriteLine(@"5. Differentiate at point 5.2 = {0}", method.Differentiate(5.2));
            MathDisplay.WriteLine();

            // 6. Integrate at point 5.2
            MathDisplay.WriteLine(@"6. Integrate at point 5.2 = {0}", method.Integrate(5.2));
            MathDisplay.WriteLine();

            // 7. Interpolate ten random points and compare to function results
            MathDisplay.WriteLine(@"7. Interpolate ten random points and compare to function results");
            rng = new MersenneTwister(1);
            for (var i = 0; i < 10; i++)
            {
                // Generate random value from [0, 10]
                var point = rng.NextDouble() * 10;
                MathDisplay.WriteLine(
                    @"Interpolate at {0} = {1}. Function({0}) = {2}",
                    point.ToString("N05"),
                    method.Interpolate(point).ToString("N05"),
                    TargetFunction1(point).ToString("N05"));
            }

            MathDisplay.WriteLine();


            MathDisplay.WriteLine("<b>Barycentric rational interpolation without poles</b>");

            // 1. Generate 10 samples of the function 1/(1+x*x) on interval [-5, 5]
            MathDisplay.WriteLine(@"1. Generate 10 samples of the function 1/(1+x*x) on interval [-5, 5]");
            points = Generate.LinearSpaced(10, -5, 5);
            values = Generate.Map <double, double>(points, TargetFunctionWithoutPolesEx);
            MathDisplay.WriteLine();

            // 2. Create a floater hormann rational pole-free interpolation based on arbitrary points
            // This method is used by default when create an interpolation using Interpolate.Common method
            method = Interpolate.RationalWithoutPoles(points, values);
            MathDisplay.WriteLine(@"2. Create a floater hormann rational pole-free interpolation based on arbitrary points");
            MathDisplay.WriteLine();

            // 3. Check if interpolation support integration
            MathDisplay.WriteLine(@"3. Support integration = {0}", method.SupportsIntegration);
            MathDisplay.WriteLine();

            // 4. Check if interpolation support differentiation
            MathDisplay.WriteLine(@"4. Support differentiation = {0}", method.SupportsDifferentiation);
            MathDisplay.WriteLine();

            // 5. Interpolate ten random points and compare to function results
            MathDisplay.WriteLine(@"5. Interpolate ten random points and compare to function results");
            rng = new MersenneTwister(1);
            for (var i = 0; i < 10; i++)
            {
                // Generate random value from [0, 5]
                var point = rng.NextDouble() * 5;
                MathDisplay.WriteLine(
                    @"Interpolate at {0} = {1}. Function({0}) = {2}",
                    point.ToString("N05"),
                    method.Interpolate(point).ToString("N05"),
                    TargetFunctionWithoutPolesEx(point).ToString("N05"));
            }

            MathDisplay.WriteLine();


            MathDisplay.WriteLine("<b>Rational interpolation with poles</b>");

            // 1. Generate 20 samples of the function f(x) = x on interval [-5, 5]
            MathDisplay.WriteLine(@"1. Generate 20 samples of the function f(x) = x on interval [-5, 5]");
            points = Generate.LinearSpaced(20, -5, 5);
            values = Generate.Map <double, double>(points, TargetFunctionWithPolesEx);
            MathDisplay.WriteLine();

            // 2. Create a burlish stoer rational interpolation based on arbitrary points
            method = Interpolate.RationalWithPoles(points, values);
            MathDisplay.WriteLine(@"2. Create a burlish stoer rational interpolation based on arbitrary points");
            MathDisplay.WriteLine();

            // 3. Check if interpolation support integration
            MathDisplay.WriteLine(@"3. Support integration = {0}", method.SupportsIntegration);
            MathDisplay.WriteLine();

            // 4. Check if interpolation support differentiation
            MathDisplay.WriteLine(@"4. Support differentiation = {0}", method.SupportsDifferentiation);
            MathDisplay.WriteLine();

            // 5. Interpolate ten random points and compare to function results
            MathDisplay.WriteLine(@"5. Interpolate ten random points and compare to function results");
            rng = new MersenneTwister(1);
            for (var i = 0; i < 10; i++)
            {
                // Generate random value from [0, 5]
                var point = rng.Next(0, 5);
                MathDisplay.WriteLine(
                    @"Interpolate at {0} = {1}. Function({0}) = {2}",
                    point.ToString("N05"),
                    method.Interpolate(point).ToString("N05"),
                    TargetFunctionWithPolesEx(point).ToString("N05"));
            }

            MathDisplay.WriteLine();
        }