public static LineSegment2IntersectionResult <double> ComputeIntersection(Point2 <double> p1, Point2 <double> p2, Point2 <double> q1, Point2 <double> q2) { if (p1 == null || p2 == null || q1 == null || q2 == null) { return(null); } //quick rejection if (!Coordinate2Utils.EnvelopesIntersect(p1, p2, q1, q2)) { return(new LineSegment2IntersectionResult <double>()); } // for each endpoint, compute which side of the other segment it lies // if both endpoints lie on the same side of the other segment, the segments do not intersect int Pq1 = Coordinate2Utils.OrientationIndex(p1, p2, q1); int Pq2 = Coordinate2Utils.OrientationIndex(p1, p2, q2); if ((Pq1 > 0 && Pq2 > 0) || (Pq1 < 0 && Pq2 < 0)) { return(new LineSegment2IntersectionResult <double>()); } int Qp1 = Coordinate2Utils.OrientationIndex(q1, q2, p1); int Qp2 = Coordinate2Utils.OrientationIndex(q1, q2, p2); if ((Qp1 > 0 && Qp2 > 0) || (Qp1 < 0 && Qp2 < 0)) { return(new LineSegment2IntersectionResult <double>()); } //end quick rejection if (Pq1 == 0 && Pq2 == 0 && Qp1 == 0 && Qp2 == 0) //collinear intersection { bool p1q1p2 = Coordinate2Utils.PointInEnvelope(p1, p2, q1); bool p1q2p2 = Coordinate2Utils.PointInEnvelope(p1, p2, q2); bool q1p1q2 = Coordinate2Utils.PointInEnvelope(q1, q2, p1); bool q1p2q2 = Coordinate2Utils.PointInEnvelope(q1, q2, p2); if (p1q1p2 && p1q2p2) { return(new LineSegment2IntersectionResult <double>(LineIntersectionType.CollinearIntersection, q1, q2)); } if (q1p1q2 && q1p2q2) { return(new LineSegment2IntersectionResult <double>(LineIntersectionType.CollinearIntersection, p1, p2)); } if (p1q1p2 && q1p1q2) { if (q1.Equals(p1) && !p1q2p2 && !q1p2q2) { return(new LineSegment2IntersectionResult <double>(q1)); } return(new LineSegment2IntersectionResult <double>(LineIntersectionType.CollinearIntersection, q1, p1)); } if (p1q1p2 && q1p2q2) { if (q1.Equals(p2) && !p1q2p2 && !q1p1q2) { return(new LineSegment2IntersectionResult <double>(q1)); } return(new LineSegment2IntersectionResult <double>(LineIntersectionType.CollinearIntersection, q1, p2)); } if (p1q2p2 && q1p1q2) { if (q2.Equals(p1) && !p1q1p2 && !q1p2q2) { return(new LineSegment2IntersectionResult <double>(q2)); } return(new LineSegment2IntersectionResult <double>(LineIntersectionType.CollinearIntersection, q2, p1)); } if (p1q2p2 && q1p2q2) { if (q2.Equals(p2) && !p1q1p2 && !q1p1q2) { return(new LineSegment2IntersectionResult <double>(q2)); } return(new LineSegment2IntersectionResult <double>(LineIntersectionType.CollinearIntersection, q2, p2)); } return(new LineSegment2IntersectionResult <double>()); }//end collinear // At this point we know that there is a single intersection point (since the lines are not collinear). // Check if the intersection is an endpoint. If it is, copy the endpoint as the intersection point. Copying the point rather than computing it // ensures the point has the exact value, which is important for robustness. It is sufficient to simply check for an endpoint which is on // the other line, since at this point we know that the inputLines must intersect. if (Pq1 == 0 || Pq2 == 0 || Qp1 == 0 || Qp2 == 0) { // Check for two equal endpoints. This is done explicitly rather than by the orientation tests below in order to improve robustness. if (p1.Equals(q1) || p1.Equals(q2)) { return(new LineSegment2IntersectionResult <double>(p1)); } else if (p2.Equals(q1) || p2.Equals(q2)) { return(new LineSegment2IntersectionResult <double>(p2)); } // Now check to see if any endpoint lies on the interior of the other segment. else if (Pq1 == 0) { return(new LineSegment2IntersectionResult <double>(q1)); } else if (Pq2 == 0) { return(new LineSegment2IntersectionResult <double>(q2)); } else if (Qp1 == 0) { return(new LineSegment2IntersectionResult <double>(p1)); } else if (Qp2 == 0) { return(new LineSegment2IntersectionResult <double>(p2)); } } //end exact at endpoint //intersectWNormalization Coordinate2 <double> n1 = new Coordinate2 <double>(p1); Coordinate2 <double> n2 = new Coordinate2 <double>(p2); Coordinate2 <double> n3 = new Coordinate2 <double>(q1); Coordinate2 <double> n4 = new Coordinate2 <double>(q2); Coordinate2 <double> normPt = new Coordinate2 <double>(); Coordinate2Utils.NormalizeToEnvCentre(n1, n2, n3, n4, normPt); //safeHCoordinateIntersection Coordinate2 <double> intPt = null; // unrolled computation double px = n1.Y - n2.Y; double py = n2.X - n1.X; double pw = n1.X * n2.Y - n2.X * n1.Y; double qx = n3.Y - n4.Y; double qy = n4.X - n3.X; double qw = n3.X * n4.Y - n4.X * n3.Y; double x = py * qw - qy * pw; double y = qx * pw - px * qw; double w = px * qy - qx * py; double xInt = x / w; double yInt = y / w; if (double.IsNaN(xInt) || double.IsNaN(yInt) || double.IsInfinity(xInt) || double.IsInfinity(yInt)) { intPt = MeanNearest(n1, n2, n3, n4); xInt = intPt.X + normPt.X; yInt = intPt.Y + normPt.Y; return(new LineSegment2IntersectionResult <double>(p1.Factory.ConstructPoint(xInt, yInt))); } else { xInt += normPt.X; yInt += normPt.Y; intPt = new Coordinate2 <double>(xInt, yInt); } //End safeHCoordinateIntersection //End intersectWNormalization if (!(Coordinate2Utils.PointInEnvelope(p1, p2, intPt) || Coordinate2Utils.PointInEnvelope(q1, q2, intPt))) { intPt = MeanNearest(p1, p2, q1, q2); } return(new LineSegment2IntersectionResult <double>(p1.Factory.ConstructPoint(intPt.X, intPt.Y))); }