public override void ExecuteExample() { // <a href="http://en.wikipedia.org/wiki/Binomial_distribution">Binomial distribution</a> MathDisplay.WriteLine("<b>Binomial distribution</b>"); // 1. Initialize the new instance of the Binomial distribution class with parameters P = 0.2, N = 20 var binomial = new Binomial(0.2, 20); MathDisplay.WriteLine(@"1. Initialize the new instance of the Binomial distribution class with parameters P = {0}, N = {1}", binomial.P, binomial.N); MathDisplay.WriteLine(); // 2. Distributuion properties: MathDisplay.WriteLine(@"2. {0} distributuion properties:", binomial); // Cumulative distribution function MathDisplay.WriteLine(@"{0} - Сumulative distribution at location '3'", binomial.CumulativeDistribution(3).ToString(" #0.00000;-#0.00000")); // Probability density MathDisplay.WriteLine(@"{0} - Probability mass at location '3'", binomial.Probability(3).ToString(" #0.00000;-#0.00000")); // Log probability density MathDisplay.WriteLine(@"{0} - Log probability mass at location '3'", binomial.ProbabilityLn(3).ToString(" #0.00000;-#0.00000")); // Entropy MathDisplay.WriteLine(@"{0} - Entropy", binomial.Entropy.ToString(" #0.00000;-#0.00000")); // Largest element in the domain MathDisplay.WriteLine(@"{0} - Largest element in the domain", binomial.Maximum.ToString(" #0.00000;-#0.00000")); // Smallest element in the domain MathDisplay.WriteLine(@"{0} - Smallest element in the domain", binomial.Minimum.ToString(" #0.00000;-#0.00000")); // Mean MathDisplay.WriteLine(@"{0} - Mean", binomial.Mean.ToString(" #0.00000;-#0.00000")); // Median MathDisplay.WriteLine(@"{0} - Median", binomial.Median.ToString(" #0.00000;-#0.00000")); // Mode MathDisplay.WriteLine(@"{0} - Mode", binomial.Mode.ToString(" #0.00000;-#0.00000")); // Variance MathDisplay.WriteLine(@"{0} - Variance", binomial.Variance.ToString(" #0.00000;-#0.00000")); // Standard deviation MathDisplay.WriteLine(@"{0} - Standard deviation", binomial.StdDev.ToString(" #0.00000;-#0.00000")); // Skewness MathDisplay.WriteLine(@"{0} - Skewness", binomial.Skewness.ToString(" #0.00000;-#0.00000")); MathDisplay.WriteLine(); // 3. Generate 10 samples of the Binomial distribution MathDisplay.WriteLine(@"3. Generate 10 samples of the Binomial distribution"); for (var i = 0; i < 10; i++) { MathDisplay.Write(binomial.Sample().ToString("N05") + @" "); } MathDisplay.FlushBuffer(); MathDisplay.WriteLine(); MathDisplay.WriteLine(); // <a href="http://en.wikipedia.org/wiki/Bernoulli_distribution">Bernoulli distribution</a> MathDisplay.WriteLine("<b>Bernoulli distribution</b>"); // 1. Initialize the new instance of the Bernoulli distribution class with parameter P = 0.2 var bernoulli = new Bernoulli(0.2); MathDisplay.WriteLine(@"1. Initialize the new instance of the Bernoulli distribution class with parameter P = {0}", bernoulli.P); MathDisplay.WriteLine(); // 2. Distributuion properties: MathDisplay.WriteLine(@"2. {0} distributuion properties:", bernoulli); // Cumulative distribution function MathDisplay.WriteLine(@"{0} - Сumulative distribution at location '3'", bernoulli.CumulativeDistribution(3).ToString(" #0.00000;-#0.00000")); // Probability density MathDisplay.WriteLine(@"{0} - Probability mass at location '3'", bernoulli.Probability(3).ToString(" #0.00000;-#0.00000")); // Log probability density MathDisplay.WriteLine(@"{0} - Log probability mass at location '3'", bernoulli.ProbabilityLn(3).ToString(" #0.00000;-#0.00000")); // Entropy MathDisplay.WriteLine(@"{0} - Entropy", bernoulli.Entropy.ToString(" #0.00000;-#0.00000")); // Largest element in the domain MathDisplay.WriteLine(@"{0} - Largest element in the domain", bernoulli.Maximum.ToString(" #0.00000;-#0.00000")); // Smallest element in the domain MathDisplay.WriteLine(@"{0} - Smallest element in the domain", bernoulli.Minimum.ToString(" #0.00000;-#0.00000")); // Mean MathDisplay.WriteLine(@"{0} - Mean", bernoulli.Mean.ToString(" #0.00000;-#0.00000")); // Mode MathDisplay.WriteLine(@"{0} - Mode", bernoulli.Mode.ToString(" #0.00000;-#0.00000")); // Variance MathDisplay.WriteLine(@"{0} - Variance", bernoulli.Variance.ToString(" #0.00000;-#0.00000")); // Standard deviation MathDisplay.WriteLine(@"{0} - Standard deviation", bernoulli.StdDev.ToString(" #0.00000;-#0.00000")); // Skewness MathDisplay.WriteLine(@"{0} - Skewness", bernoulli.Skewness.ToString(" #0.00000;-#0.00000")); MathDisplay.WriteLine(); // 3. Generate 10 samples of the Bernoulli distribution MathDisplay.WriteLine(@"3. Generate 10 samples of the Bernoulli distribution"); for (var i = 0; i < 10; i++) { MathDisplay.Write(bernoulli.Sample().ToString("N05") + @" "); } MathDisplay.FlushBuffer(); MathDisplay.WriteLine(); MathDisplay.WriteLine(); // <a href="http://en.wikipedia.org/wiki/Categorical_distribution">Categorical distribution</a> MathDisplay.WriteLine("<b>Categorical distribution</b>"); // 1. Initialize the new instance of the Categorical distribution class with parameters P = (0.1, 0.2, 0.25, 0.45) var binomialC = new Categorical(new[] { 0.1, 0.2, 0.25, 0.45 }); MathDisplay.WriteLine(@"1. Initialize the new instance of the Categorical distribution class with parameters P = (0.1, 0.2, 0.25, 0.45)"); MathDisplay.WriteLine(); // 2. Distributuion properties: MathDisplay.WriteLine(@"2. {0} distributuion properties:", binomialC); // Cumulative distribution function MathDisplay.WriteLine(@"{0} - Сumulative distribution at location '3'", binomialC.CumulativeDistribution(3).ToString(" #0.00000;-#0.00000")); // Probability density MathDisplay.WriteLine(@"{0} - Probability mass at location '3'", binomialC.Probability(3).ToString(" #0.00000;-#0.00000")); // Log probability density MathDisplay.WriteLine(@"{0} - Log probability mass at location '3'", binomialC.ProbabilityLn(3).ToString(" #0.00000;-#0.00000")); // Entropy MathDisplay.WriteLine(@"{0} - Entropy", binomialC.Entropy.ToString(" #0.00000;-#0.00000")); // Largest element in the domain MathDisplay.WriteLine(@"{0} - Largest element in the domain", binomialC.Maximum.ToString(" #0.00000;-#0.00000")); // Smallest element in the domain MathDisplay.WriteLine(@"{0} - Smallest element in the domain", binomialC.Minimum.ToString(" #0.00000;-#0.00000")); // Mean MathDisplay.WriteLine(@"{0} - Mean", binomialC.Mean.ToString(" #0.00000;-#0.00000")); // Median MathDisplay.WriteLine(@"{0} - Median", binomialC.Median.ToString(" #0.00000;-#0.00000")); // Variance MathDisplay.WriteLine(@"{0} - Variance", binomialC.Variance.ToString(" #0.00000;-#0.00000")); // Standard deviation MathDisplay.WriteLine(@"{0} - Standard deviation", binomialC.StdDev.ToString(" #0.00000;-#0.00000")); // 3. Generate 10 samples of the Categorical distribution MathDisplay.WriteLine(@"3. Generate 10 samples of the Categorical distribution"); for (var i = 0; i < 10; i++) { MathDisplay.Write(binomialC.Sample().ToString("N05") + @" "); } MathDisplay.FlushBuffer(); MathDisplay.WriteLine(); MathDisplay.WriteLine(); // <a href="http://en.wikipedia.org/wiki/Conway%E2%80%93Maxwell%E2%80%93Poisson_distribution">ConwayMaxwellPoisson distribution</a> MathDisplay.WriteLine("<b>Conway Maxwell Poisson distribution</b>"); // 1. Initialize the new instance of the ConwayMaxwellPoisson distribution class with parameters Lambda = 2, Nu = 1 var conwayMaxwellPoisson = new ConwayMaxwellPoisson(2, 1); MathDisplay.WriteLine(@"1. Initialize the new instance of the ConwayMaxwellPoisson distribution class with parameters Lambda = {0}, Nu = {1}", conwayMaxwellPoisson.Lambda, conwayMaxwellPoisson.Nu); MathDisplay.WriteLine(); // 2. Distributuion properties: MathDisplay.WriteLine(@"2. {0} distributuion properties:", conwayMaxwellPoisson); // Cumulative distribution function MathDisplay.WriteLine(@"{0} - Сumulative distribution at location '3'", conwayMaxwellPoisson.CumulativeDistribution(3).ToString(" #0.00000;-#0.00000")); // Probability density MathDisplay.WriteLine(@"{0} - Probability mass at location '3'", conwayMaxwellPoisson.Probability(3).ToString(" #0.00000;-#0.00000")); // Log probability density MathDisplay.WriteLine(@"{0} - Log probability mass at location '3'", conwayMaxwellPoisson.ProbabilityLn(3).ToString(" #0.00000;-#0.00000")); // Smallest element in the domain MathDisplay.WriteLine(@"{0} - Smallest element in the domain", conwayMaxwellPoisson.Minimum.ToString(" #0.00000;-#0.00000")); // Mean MathDisplay.WriteLine(@"{0} - Mean", conwayMaxwellPoisson.Mean.ToString(" #0.00000;-#0.00000")); // Variance MathDisplay.WriteLine(@"{0} - Variance", conwayMaxwellPoisson.Variance.ToString(" #0.00000;-#0.00000")); // Standard deviation MathDisplay.WriteLine(@"{0} - Standard deviation", conwayMaxwellPoisson.StdDev.ToString(" #0.00000;-#0.00000")); MathDisplay.WriteLine(); // 3. Generate 10 samples of the ConwayMaxwellPoisson distribution MathDisplay.WriteLine(@"3. Generate 10 samples of the ConwayMaxwellPoisson distribution"); for (var i = 0; i < 10; i++) { MathDisplay.Write(conwayMaxwellPoisson.Sample().ToString("N05") + @" "); } MathDisplay.FlushBuffer(); MathDisplay.WriteLine(); MathDisplay.WriteLine(); // <a href="http://en.wikipedia.org/wiki/Discrete_uniform">DiscreteUniform distribution</a> MathDisplay.WriteLine("<b>Discrete Uniform distribution</b>"); // 1. Initialize the new instance of the DiscreteUniform distribution class with parameters LowerBound = 2, UpperBound = 10 var discreteUniform = new DiscreteUniform(2, 10); MathDisplay.WriteLine(@"1. Initialize the new instance of the DiscreteUniform distribution class with parameters LowerBound = {0}, UpperBound = {1}", discreteUniform.LowerBound, discreteUniform.UpperBound); MathDisplay.WriteLine(); // 2. Distributuion properties: MathDisplay.WriteLine(@"2. {0} distributuion properties:", discreteUniform); // Cumulative distribution function MathDisplay.WriteLine(@"{0} - Сumulative distribution at location '3'", discreteUniform.CumulativeDistribution(3).ToString(" #0.00000;-#0.00000")); // Probability density MathDisplay.WriteLine(@"{0} - Probability mass at location '3'", discreteUniform.Probability(3).ToString(" #0.00000;-#0.00000")); // Log probability density MathDisplay.WriteLine(@"{0} - Log probability mass at location '3'", discreteUniform.ProbabilityLn(3).ToString(" #0.00000;-#0.00000")); // Entropy MathDisplay.WriteLine(@"{0} - Entropy", discreteUniform.Entropy.ToString(" #0.00000;-#0.00000")); // Largest element in the domain MathDisplay.WriteLine(@"{0} - Largest element in the domain", discreteUniform.Maximum.ToString(" #0.00000;-#0.00000")); // Smallest element in the domain MathDisplay.WriteLine(@"{0} - Smallest element in the domain", discreteUniform.Minimum.ToString(" #0.00000;-#0.00000")); // Mean MathDisplay.WriteLine(@"{0} - Mean", discreteUniform.Mean.ToString(" #0.00000;-#0.00000")); // Median MathDisplay.WriteLine(@"{0} - Median", discreteUniform.Median.ToString(" #0.00000;-#0.00000")); // Mode MathDisplay.WriteLine(@"{0} - Mode", discreteUniform.Mode.ToString(" #0.00000;-#0.00000")); // Variance MathDisplay.WriteLine(@"{0} - Variance", discreteUniform.Variance.ToString(" #0.00000;-#0.00000")); // Standard deviation MathDisplay.WriteLine(@"{0} - Standard deviation", discreteUniform.StdDev.ToString(" #0.00000;-#0.00000")); // Skewness MathDisplay.WriteLine(@"{0} - Skewness", discreteUniform.Skewness.ToString(" #0.00000;-#0.00000")); MathDisplay.WriteLine(); // 3. Generate 10 samples of the DiscreteUniform distribution MathDisplay.WriteLine(@"3. Generate 10 samples of the DiscreteUniform distribution"); for (var i = 0; i < 10; i++) { MathDisplay.Write(discreteUniform.Sample().ToString("N05") + @" "); } MathDisplay.FlushBuffer(); MathDisplay.WriteLine(); MathDisplay.WriteLine(); // <a href="http://en.wikipedia.org/wiki/Geometric_distribution">Geometric distribution</a> MathDisplay.WriteLine("<b>Geometric distribution</b>"); // 1. Initialize the new instance of the Geometric distribution class with parameter P = 0.2 var geometric = new Geometric(0.2); MathDisplay.WriteLine(@"1. Initialize the new instance of the Geometric distribution class with parameter P = {0}", geometric.P); MathDisplay.WriteLine(); // 2. Distributuion properties: MathDisplay.WriteLine(@"2. {0} distributuion properties:", geometric); // Cumulative distribution function MathDisplay.WriteLine(@"{0} - Сumulative distribution at location '3'", geometric.CumulativeDistribution(3).ToString(" #0.00000;-#0.00000")); // Probability density MathDisplay.WriteLine(@"{0} - Probability mass at location '3'", geometric.Probability(3).ToString(" #0.00000;-#0.00000")); // Log probability density MathDisplay.WriteLine(@"{0} - Log probability mass at location '3'", geometric.ProbabilityLn(3).ToString(" #0.00000;-#0.00000")); // Entropy MathDisplay.WriteLine(@"{0} - Entropy", geometric.Entropy.ToString(" #0.00000;-#0.00000")); // Largest element in the domain MathDisplay.WriteLine(@"{0} - Largest element in the domain", geometric.Maximum.ToString(" #0.00000;-#0.00000")); // Smallest element in the domain MathDisplay.WriteLine(@"{0} - Smallest element in the domain", geometric.Minimum.ToString(" #0.00000;-#0.00000")); // Mean MathDisplay.WriteLine(@"{0} - Mean", geometric.Mean.ToString(" #0.00000;-#0.00000")); // Median MathDisplay.WriteLine(@"{0} - Median", geometric.Median.ToString(" #0.00000;-#0.00000")); // Mode MathDisplay.WriteLine(@"{0} - Mode", geometric.Mode.ToString(" #0.00000;-#0.00000")); // Variance MathDisplay.WriteLine(@"{0} - Variance", geometric.Variance.ToString(" #0.00000;-#0.00000")); // Standard deviation MathDisplay.WriteLine(@"{0} - Standard deviation", geometric.StdDev.ToString(" #0.00000;-#0.00000")); // Skewness MathDisplay.WriteLine(@"{0} - Skewness", geometric.Skewness.ToString(" #0.00000;-#0.00000")); MathDisplay.WriteLine(); // 3. Generate 10 samples of the Geometric distribution MathDisplay.WriteLine(@"3. Generate 10 samples of the Geometric distribution"); for (var i = 0; i < 10; i++) { MathDisplay.Write(geometric.Sample().ToString("N05") + @" "); } MathDisplay.FlushBuffer(); MathDisplay.WriteLine(); MathDisplay.WriteLine(); // <a href="http://en.wikipedia.org/wiki/Hypergeometric_distribution">Hypergeometric distribution</a> MathDisplay.WriteLine("<b>Hypergeometric distribution</b>"); // 1. Initialize the new instance of the Hypergeometric distribution class with parameters PopulationSize = 10, M = 2, N = 8 var hypergeometric = new Hypergeometric(30, 15, 10); MathDisplay.WriteLine(@"1. Initialize the new instance of the Hypergeometric distribution class with parameters Population = {0}, Success = {1}, Draws = {2}", hypergeometric.Population, hypergeometric.Success, hypergeometric.Draws); MathDisplay.WriteLine(); // 2. Distributuion properties: MathDisplay.WriteLine(@"2. {0} distributuion properties:", hypergeometric); // Cumulative distribution function MathDisplay.WriteLine(@"{0} - Сumulative distribution at location '3'", hypergeometric.CumulativeDistribution(3).ToString(" #0.00000;-#0.00000")); // Probability density MathDisplay.WriteLine(@"{0} - Probability mass at location '3'", hypergeometric.Probability(3).ToString(" #0.00000;-#0.00000")); // Log probability density MathDisplay.WriteLine(@"{0} - Log probability mass at location '3'", hypergeometric.ProbabilityLn(3).ToString(" #0.00000;-#0.00000")); // Largest element in the domain MathDisplay.WriteLine(@"{0} - Largest element in the domain", hypergeometric.Maximum.ToString(" #0.00000;-#0.00000")); // Smallest element in the domain MathDisplay.WriteLine(@"{0} - Smallest element in the domain", hypergeometric.Minimum.ToString(" #0.00000;-#0.00000")); // Mean MathDisplay.WriteLine(@"{0} - Mean", hypergeometric.Mean.ToString(" #0.00000;-#0.00000")); // Mode MathDisplay.WriteLine(@"{0} - Mode", hypergeometric.Mode.ToString(" #0.00000;-#0.00000")); // Variance MathDisplay.WriteLine(@"{0} - Variance", hypergeometric.Variance.ToString(" #0.00000;-#0.00000")); // Standard deviation MathDisplay.WriteLine(@"{0} - Standard deviation", hypergeometric.StdDev.ToString(" #0.00000;-#0.00000")); // Skewness MathDisplay.WriteLine(@"{0} - Skewness", hypergeometric.Skewness.ToString(" #0.00000;-#0.00000")); MathDisplay.WriteLine(); // 3. Generate 10 samples of the Hypergeometric distribution MathDisplay.WriteLine(@"3. Generate 10 samples of the Hypergeometric distribution"); for (var i = 0; i < 10; i++) { MathDisplay.Write(hypergeometric.Sample().ToString("N05") + @" "); } MathDisplay.FlushBuffer(); MathDisplay.WriteLine(); MathDisplay.WriteLine(); // <a href="http://en.wikipedia.org/wiki/Negative_binomial">NegativeBinomial distribution</a> MathDisplay.WriteLine("<b>Negative Binomial distribution</b>"); // 1. Initialize the new instance of the NegativeBinomial distribution class with parameters P = 0.2, R = 20 var negativeBinomial = new NegativeBinomial(20, 0.2); MathDisplay.WriteLine(@"1. Initialize the new instance of the NegativeBinomial distribution class with parameters P = {0}, N = {1}", negativeBinomial.P, negativeBinomial.R); MathDisplay.WriteLine(); // 2. Distributuion properties: MathDisplay.WriteLine(@"2. {0} distributuion properties:", negativeBinomial); // Cumulative distribution function MathDisplay.WriteLine(@"{0} - Сumulative distribution at location '3'", negativeBinomial.CumulativeDistribution(3).ToString(" #0.00000;-#0.00000")); // Probability density MathDisplay.WriteLine(@"{0} - Probability mass at location '3'", negativeBinomial.Probability(3).ToString(" #0.00000;-#0.00000")); // Log probability density MathDisplay.WriteLine(@"{0} - Log probability mass at location '3'", negativeBinomial.ProbabilityLn(3).ToString(" #0.00000;-#0.00000")); // Largest element in the domain MathDisplay.WriteLine(@"{0} - Largest element in the domain", negativeBinomial.Maximum.ToString(" #0.00000;-#0.00000")); // Smallest element in the domain MathDisplay.WriteLine(@"{0} - Smallest element in the domain", negativeBinomial.Minimum.ToString(" #0.00000;-#0.00000")); // Mean MathDisplay.WriteLine(@"{0} - Mean", negativeBinomial.Mean.ToString(" #0.00000;-#0.00000")); // Mode MathDisplay.WriteLine(@"{0} - Mode", negativeBinomial.Mode.ToString(" #0.00000;-#0.00000")); // Variance MathDisplay.WriteLine(@"{0} - Variance", negativeBinomial.Variance.ToString(" #0.00000;-#0.00000")); // Standard deviation MathDisplay.WriteLine(@"{0} - Standard deviation", negativeBinomial.StdDev.ToString(" #0.00000;-#0.00000")); // Skewness MathDisplay.WriteLine(@"{0} - Skewness", negativeBinomial.Skewness.ToString(" #0.00000;-#0.00000")); MathDisplay.WriteLine(); // 3. Generate 10 samples of the NegativeBinomial distribution MathDisplay.WriteLine(@"3. Generate 10 samples of the NegativeBinomial distribution"); for (var i = 0; i < 10; i++) { MathDisplay.Write(negativeBinomial.Sample().ToString("N05") + @" "); } MathDisplay.FlushBuffer(); MathDisplay.WriteLine(); MathDisplay.WriteLine(); // <a href="http://en.wikipedia.org/wiki/Poisson_distribution">Poisson distribution</a> MathDisplay.WriteLine("<b>Poisson distribution</b>"); // 1. Initialize the new instance of the Poisson distribution class with parameter Lambda = 1 var poisson = new Poisson(1); MathDisplay.WriteLine(@"1. Initialize the new instance of the Poisson distribution class with parameter Lambda = {0}", poisson.Lambda); MathDisplay.WriteLine(); // 2. Distributuion properties: MathDisplay.WriteLine(@"2. {0} distributuion properties:", poisson); // Cumulative distribution function MathDisplay.WriteLine(@"{0} - Сumulative distribution at location '3'", poisson.CumulativeDistribution(3).ToString(" #0.00000;-#0.00000")); // Probability density MathDisplay.WriteLine(@"{0} - Probability mass at location '3'", poisson.Probability(3).ToString(" #0.00000;-#0.00000")); // Log probability density MathDisplay.WriteLine(@"{0} - Log probability mass at location '3'", poisson.ProbabilityLn(3).ToString(" #0.00000;-#0.00000")); // Entropy MathDisplay.WriteLine(@"{0} - Entropy", poisson.Entropy.ToString(" #0.00000;-#0.00000")); // Largest element in the domain MathDisplay.WriteLine(@"{0} - Largest element in the domain", poisson.Maximum.ToString(" #0.00000;-#0.00000")); // Smallest element in the domain MathDisplay.WriteLine(@"{0} - Smallest element in the domain", poisson.Minimum.ToString(" #0.00000;-#0.00000")); // Mean MathDisplay.WriteLine(@"{0} - Mean", poisson.Mean.ToString(" #0.00000;-#0.00000")); // Median MathDisplay.WriteLine(@"{0} - Median", poisson.Median.ToString(" #0.00000;-#0.00000")); // Mode MathDisplay.WriteLine(@"{0} - Mode", poisson.Mode.ToString(" #0.00000;-#0.00000")); // Variance MathDisplay.WriteLine(@"{0} - Variance", poisson.Variance.ToString(" #0.00000;-#0.00000")); // Standard deviation MathDisplay.WriteLine(@"{0} - Standard deviation", poisson.StdDev.ToString(" #0.00000;-#0.00000")); // Skewness MathDisplay.WriteLine(@"{0} - Skewness", poisson.Skewness.ToString(" #0.00000;-#0.00000")); MathDisplay.WriteLine(); // 3. Generate 10 samples of the Poisson distribution MathDisplay.WriteLine(@"3. Generate 10 samples of the Poisson distribution"); for (var i = 0; i < 10; i++) { MathDisplay.Write(poisson.Sample().ToString("N05") + @" "); } MathDisplay.FlushBuffer(); MathDisplay.WriteLine(); MathDisplay.WriteLine(); // <a href="http://en.wikipedia.org/wiki/Zipf_distribution">Zipf distribution</a> MathDisplay.WriteLine("<b>Zipf distribution</b>"); // 1. Initialize the new instance of the Zipf distribution class with parameters S = 5, N = 10 var zipf = new Zipf(5, 10); MathDisplay.WriteLine(@"1. Initialize the new instance of the Zipf distribution class with parameters S = {0}, N = {1}", zipf.S, zipf.N); MathDisplay.WriteLine(); // 2. Distributuion properties: MathDisplay.WriteLine(@"2. {0} distributuion properties:", zipf); // Cumulative distribution function MathDisplay.WriteLine(@"{0} - Сumulative distribution at location '3'", zipf.CumulativeDistribution(3).ToString(" #0.00000;-#0.00000")); // Probability density MathDisplay.WriteLine(@"{0} - Probability mass at location '3'", zipf.Probability(3).ToString(" #0.00000;-#0.00000")); // Log probability density MathDisplay.WriteLine(@"{0} - Log probability mass at location '3'", zipf.ProbabilityLn(3).ToString(" #0.00000;-#0.00000")); // Entropy MathDisplay.WriteLine(@"{0} - Entropy", zipf.Entropy.ToString(" #0.00000;-#0.00000")); // Largest element in the domain MathDisplay.WriteLine(@"{0} - Largest element in the domain", zipf.Maximum.ToString(" #0.00000;-#0.00000")); // Smallest element in the domain MathDisplay.WriteLine(@"{0} - Smallest element in the domain", zipf.Minimum.ToString(" #0.00000;-#0.00000")); // Mean MathDisplay.WriteLine(@"{0} - Mean", zipf.Mean.ToString(" #0.00000;-#0.00000")); // Mode MathDisplay.WriteLine(@"{0} - Mode", zipf.Mode.ToString(" #0.00000;-#0.00000")); // Variance MathDisplay.WriteLine(@"{0} - Variance", zipf.Variance.ToString(" #0.00000;-#0.00000")); // Standard deviation MathDisplay.WriteLine(@"{0} - Standard deviation", zipf.StdDev.ToString(" #0.00000;-#0.00000")); // Skewness MathDisplay.WriteLine(@"{0} - Skewness", zipf.Skewness.ToString(" #0.00000;-#0.00000")); MathDisplay.WriteLine(); // 3. Generate 10 samples of the Zipf distribution MathDisplay.WriteLine(@"3. Generate 10 samples of the Zipf distribution"); for (var i = 0; i < 10; i++) { MathDisplay.Write(zipf.Sample().ToString("N05") + @" "); } MathDisplay.FlushBuffer(); MathDisplay.WriteLine(); MathDisplay.WriteLine(); }
public void CanSample() { var d = new ConwayMaxwellPoisson(1.0, 2.0); d.Sample(); }
/// <summary> /// Run example /// </summary> /// <a href="http://en.wikipedia.org/wiki/Conway%E2%80%93Maxwell%E2%80%93Poisson_distribution">ConwayMaxwellPoisson distribution</a> public void Run() { // 1. Initialize the new instance of the ConwayMaxwellPoisson distribution class with parameters Lambda = 2, Nu = 1 var binomial = new ConwayMaxwellPoisson(2, 1); Console.WriteLine(@"1. Initialize the new instance of the ConwayMaxwellPoisson distribution class with parameters Lambda = {0}, Nu = {1}", binomial.Lambda, binomial.Nu); Console.WriteLine(); // 2. Distributuion properties: Console.WriteLine(@"2. {0} distributuion properties:", binomial); // Cumulative distribution function Console.WriteLine(@"{0} - Сumulative distribution at location '3'", binomial.CumulativeDistribution(3).ToString(" #0.00000;-#0.00000")); // Probability density Console.WriteLine(@"{0} - Probability mass at location '3'", binomial.Probability(3).ToString(" #0.00000;-#0.00000")); // Log probability density Console.WriteLine(@"{0} - Log probability mass at location '3'", binomial.ProbabilityLn(3).ToString(" #0.00000;-#0.00000")); // Smallest element in the domain Console.WriteLine(@"{0} - Smallest element in the domain", binomial.Minimum.ToString(" #0.00000;-#0.00000")); // Mean Console.WriteLine(@"{0} - Mean", binomial.Mean.ToString(" #0.00000;-#0.00000")); // Variance Console.WriteLine(@"{0} - Variance", binomial.Variance.ToString(" #0.00000;-#0.00000")); // Standard deviation Console.WriteLine(@"{0} - Standard deviation", binomial.StdDev.ToString(" #0.00000;-#0.00000")); Console.WriteLine(); // 3. Generate 10 samples of the ConwayMaxwellPoisson distribution Console.WriteLine(@"3. Generate 10 samples of the ConwayMaxwellPoisson distribution"); for (var i = 0; i < 10; i++) { Console.Write(binomial.Sample().ToString("N05") + @" "); } Console.WriteLine(); Console.WriteLine(); // 4. Generate 100000 samples of the ConwayMaxwellPoisson(4, 1) distribution and display histogram Console.WriteLine(@"4. Generate 100000 samples of the ConwayMaxwellPoisson(4, 1) distribution and display histogram"); var data = new double[100000]; for (var i = 0; i < data.Length; i++) { data[i] = binomial.Sample(); } ConsoleHelper.DisplayHistogram(data); Console.WriteLine(); // 5. Generate 100000 samples of the ConwayMaxwellPoisson(2, 1) distribution and display histogram Console.WriteLine(@"5. Generate 100000 samples of the ConwayMaxwellPoisson(2, 1) distribution and display histogram"); binomial.Lambda = 2; for (var i = 0; i < data.Length; i++) { data[i] = binomial.Sample(); } ConsoleHelper.DisplayHistogram(data); Console.WriteLine(); // 6. Generate 100000 samples of the ConwayMaxwellPoisson(5, 2) distribution and display histogram Console.WriteLine(@"6. Generate 100000 samples of the ConwayMaxwellPoisson(5, 2) distribution and display histogram"); binomial.Lambda = 5; binomial.Nu = 2; for (var i = 0; i < data.Length; i++) { data[i] = binomial.Sample(); } ConsoleHelper.DisplayHistogram(data); }