コード例 #1
0
        public void Test_Train_Correct()
        {
            var inputArray = new double[, , ]
            {
                {
                    { 1, 3, 5, 8, 7, 4, 2, 8, 6 },
                    { 4, 2, 3, 5, 1, 0, 1, 2, 7 },
                    { 8, 3, 1, 2, 3, 6, 5, 8, 5 },
                    { 7, 2, 4, 2, 9, 3, 6, 4, 6 },
                    { 9, 8, 0, 8, 8, 3, 7, 1, 0 },
                    { 9, 4, 1, 2, 2, 4, 7, 4, 3 },
                    { 0, 5, 9, 1, 6, 4, 5, 4, 3 },
                    { 3, 0, 5, 8, 6, 5, 7, 0, 1 },
                    { 1, 4, 2, 3, 6, 1, 5, 4, 3 }
                },
                {
                    { 4, 3, 5, 0, 1, 2, 4, 8, 9 },
                    { 4, 8, 0, 1, 3, 4, 5, 6, 7 },
                    { 4, 4, 2, 3, 6, 5, 4, 2, 1 },
                    { 0, 7, 8, 6, 4, 4, 1, 0, 0 },
                    { 1, 0, 1, 2, 4, 5, 6, 2, 3 },
                    { 1, 2, 3, 7, 8, 8, 7, 4, 6 },
                    { 0, 3, 3, 2, 1, 7, 2, 3, 0 },
                    { 1, 8, 4, 4, 1, 2, 0, 0, 5 },
                    { 7, 9, 9, 9, 1, 3, 1, 4, 6 }
                },
                {
                    { 7, 1, 4, 3, 2, 1, 0, 4, 6 },
                    { 5, 3, 1, 9, 7, 5, 3, 1, 1 },
                    { 4, 2, 0, 8, 6, 4, 2, 0, 0 },
                    { 7, 8, 7, 4, 3, 8, 0, 1, 4 },
                    { 5, 2, 1, 3, 6, 5, 4, 7, 5 },
                    { 1, 6, 2, 4, 2, 3, 7, 6, 1 },
                    { 0, 3, 7, 1, 3, 0, 3, 1, 8 },
                    { 6, 4, 8, 8, 9, 0, 1, 2, 1 },
                    { 5, 6, 7, 8, 9, 0, 2, 4, 7 }
                }
            };
            var filter1Array = new double[, , ]
            {
                {
                    { 1, 4, 5 },
                    { 0, 3, 4 },
                    { 6, 8, 7 }
                },
                {
                    { 4, 1, 0 },
                    { 6, 3, 1 },
                    { 5, 4, 2 }
                },
                {
                    { 2, 2, 5 },
                    { 3, 7, 4 },
                    { 4, 1, 0 }
                }
            };
            var filter2Array = new double[, , ]
            {
                {
                    { 4, 7, 1 },
                    { 3, 0, 2 },
                    { 4, 2, 1 }
                },
                {
                    { 3, 2, 2 },
                    { 8, 3, 4 },
                    { 7, 7, 1 }
                },
                {
                    { 2, 3, 0 },
                    { 4, 0, 7 },
                    { 1, 5, 4 }
                }
            };
            var expectedArray = new double[, , ]
            {
                {
                    { 336, 320, 339, 402 },
                    { 360, 402, 448, 266 },
                    { 272, 377, 444, 353 },
                    { 408, 486, 299, 253 }
                },
                {
                    { 287, 312, 334, 336 },
                    { 330, 335, 379, 317 },
                    { 272, 300, 424, 352 },
                    { 410, 481, 250, 248 }
                }
            };
            var errorArray = new double[, , ]
            {
                {
                    { 1, 2, 3, 4 },
                    { 5, 6, 7, 8 },
                    { 1, 2, 3, 4 },
                    { 5, 6, 7, 8 }
                },
                {
                    { 5, 4, 3, 2 },
                    { 1, 2, 3, 4 },
                    { 6, 5, 4, 3 },
                    { 4, 3, 2, 1 }
                }
            };

            var input    = Converters.Convert(inputArray);
            var filter1  = Converters.Convert(filter1Array);
            var filter2  = Converters.Convert(filter2Array);
            var expected = Converters.Convert(expectedArray);
            var error    = Converters.Convert(errorArray);

            var layer = new ConvolutionalLayer
            {
                Stride             = 2,
                ActivationFunction = new ActivationFunctionMoq()
            };

            layer.Neurals.Add(new Filter {
                Weights = filter1
            });
            layer.Neurals.Add(new Filter {
                Weights = filter2
            });

            var newError = layer.Train(error, input, expected);
        }