コード例 #1
0
        public void ConvUtils_ReshapeConvolutionsToRowMajor()
        {
            var batchSize = 5;

            var filterHeight = 2;
            var filterWidth  = 2;
            var filterDepth  = 2;

            var stride  = 1;
            var padding = 0;

            var inputWidth  = 3;
            var inputHeight = 3;
            var inputDepth  = 3;

            var filterGridWidth  = ConvUtils.GetFilterGridLength(inputWidth, filterWidth, stride, padding, BorderMode.Valid);
            var filterGridHeight = ConvUtils.GetFilterGridLength(inputHeight, filterHeight, stride, padding, BorderMode.Valid);

            var k   = filterDepth;
            var crs = inputDepth * filterWidth * filterHeight;
            var npq = batchSize * filterGridWidth * filterGridHeight;

            var convolutedInput = Matrix <float> .Build.Dense(k, npq, new float[] { -6.260461f, 87.38299f, -7.173417f, 94.47046f, -8.999331f, 108.6454f, -9.912288f, 115.7329f, -6.260461f, 87.38299f, -7.173417f, 94.47046f, -8.999331f, 108.6454f, -9.912288f, 115.7329f, -6.260461f, 87.38299f, -7.173417f, 94.47046f, -8.999331f, 108.6454f, -9.912288f, 115.7329f, -6.260461f, 87.38299f, -7.173417f, 94.47046f, -8.999331f, 108.6454f, -9.912288f, 115.7329f, -6.260461f, 87.38299f, -7.173417f, 94.47046f, -8.999331f, 108.6454f, -9.912288f, 115.7329f });

            var actual = Matrix <float> .Build.Dense(batchSize, k *filterGridWidth *filterGridHeight);

            ConvUtils.ReshapeConvolutionsToRowMajor(convolutedInput, inputDepth, inputHeight, inputWidth, filterHeight, filterWidth,
                                                    padding, padding, stride, stride, BorderMode.Valid, actual);

            var expected = Matrix <float> .Build.Dense(batchSize, k *filterGridWidth *filterGridHeight, new float[] { -6.260461f, -6.260461f, -6.260461f, -6.260461f, -6.260461f, -7.173417f, -7.173417f, -7.173417f, -7.173417f, -7.173417f, -8.999331f, -8.999331f, -8.999331f, -8.999331f, -8.999331f, -9.912288f, -9.912288f, -9.912288f, -9.912288f, -9.912288f, 87.38299f, 87.38299f, 87.38299f, 87.38299f, 87.38299f, 94.47046f, 94.47046f, 94.47046f, 94.47046f, 94.47046f, 108.6454f, 108.6454f, 108.6454f, 108.6454f, 108.6454f, 115.7329f, 115.7329f, 115.7329f, 115.7329f, 115.7329f });

            MatrixAsserts.AreEqual(expected, actual);
        }
コード例 #2
0
        public void BatchNormalizationLayer_Forward_SpatialInput()
        {
            var batchSize = 2;

            var filterHeight = 2;
            var filterWidth  = 2;
            var filterDepth  = 2;

            var stride  = 1;
            var padding = 0;

            var inputWidth  = 3;
            var inputHeight = 3;
            var inputDepth  = 3;

            var filterGridWidth = ConvUtils.GetFilterGridLength(inputWidth, filterWidth,
                                                                stride, padding, BorderMode.Valid);

            var filterGridHeight = ConvUtils.GetFilterGridLength(inputHeight, filterHeight,
                                                                 stride, padding, BorderMode.Valid);

            var k = filterDepth;

            var input     = new float[] { 111, 121, 112, 122, 113, 123, 114, 124, 211, 221, 212, 222, 213, 223, 214, 224 };
            var convInput = Matrix <float> .Build.Dense(2, 8, input);

            var rowWiseInput = Matrix <float> .Build.Dense(batchSize, k *filterGridWidth *filterGridHeight);

            Trace.WriteLine(convInput);

            ConvUtils.ReshapeConvolutionsToRowMajor(convInput, inputDepth, inputHeight, inputWidth,
                                                    filterHeight, filterWidth, padding, padding, stride, stride,
                                                    BorderMode.Valid, rowWiseInput);

            Trace.WriteLine(rowWiseInput);

            var sut = new BatchNormalizationLayer();

            sut.Initialize(filterGridWidth, filterGridHeight, filterDepth, batchSize,
                           Initialization.GlorotUniform, new Random(232));

            var actual = sut.Forward(rowWiseInput);

            Trace.WriteLine(string.Join(", ", actual.ToColumnMajorArray()));
            Trace.WriteLine(actual);

            var expected = Matrix <float> .Build.Dense(batchSize, k *filterGridWidth *filterGridHeight, new float[] { -1.0297426f, 0.9697576f, -1.00974762f, 0.9897526f, -0.9897526f, 1.00974762f, -0.9697576f, 1.0297426f, -1.0297426f, 0.9697576f, -1.00974762f, 0.9897526f, -0.9897526f, 1.00974762f, -0.9697576f, 1.0297426f });

            MatrixAsserts.AreEqual(expected, actual);
        }
コード例 #3
0
        /// <summary>
        ///
        /// </summary>
        /// <param name="input"></param>
        /// <returns></returns>
        public Matrix <float> Forward(Matrix <float> input)
        {
            m_inputActivations = input;

            // Arrange input item for GEMM version of convolution.
            ConvUtils.Batch_Im2Col(m_inputActivations, InputDepth, InputHeight, InputWidth,
                                   FilterWidth, FilterHeight, m_padHeight, m_padWidth, m_stride, m_stride, BorderMode, Im2Cols);

            // matrix multiplication for convolution
            Weights.Multiply(Im2Cols, Conv);
            Conv.AddColumnWise(Bias, Conv);

            // Return the covolved data to row major and copy  data to output
            ConvUtils.ReshapeConvolutionsToRowMajor(Conv, InputDepth, InputHeight, InputWidth,
                                                    FilterWidth, FilterHeight, m_padHeight, m_padWidth, m_stride, m_stride, BorderMode, OutputActivations);

            return(OutputActivations);
        }
コード例 #4
0
        /// <summary>
        ///
        /// </summary>
        /// <param name="delta"></param>
        /// <returns></returns>
        public Matrix <float> Backward(Matrix <float> delta)
        {
            // Reshape delta to fit with data layout in im2col
            ConvUtils.ReshapeConvolutionsToRowMajor(delta, InputDepth, InputHeight, InputWidth,
                                                    FilterWidth, FilterHeight, m_padHeight, m_padWidth, m_stride, m_stride, BorderMode, m_deltaInReshape);

            // Calculate gradients for weights and biases
            m_deltaInReshape.TransposeAndMultiply(Im2Cols, WeightsGradients);
            m_deltaInReshape.SumRows(BiasGradients);

            // calcualte delta for next layer.
            Weights.TransposeThisAndMultiply(m_deltaInReshape, Im2Cols);

            // convert back to original layout
            m_delta.Clear();
            ConvUtils.Batch_Col2Im(Im2Cols, InputDepth, InputHeight, InputWidth,
                                   FilterHeight, FilterWidth, m_padHeight, m_padWidth, m_stride, m_stride, BorderMode, m_delta);

            return(m_delta);
        }