public void trainNestedAlgorithm(ContextualMemoryNestedAlgorithm nestedAlgorithm) { BlackAndWhiteConverter blackAndWhiteConverter = new BlackAndWhiteConverter(1); //BlackAndWhiteConverter blackAndWhiteConverter = new BlackAndWhiteConverter(63); List <String> fileList = new List <string>(benchmark.getTrainingFilesPathList()); List <ContextualMemoryNestedAlgorithmLayer> layers = nestedAlgorithm.getLayers(); for (int layerIndex = 0; layerIndex < layers.Count; layerIndex++) { ContextualMemoryNestedAlgorithmLayer layer = layers[layerIndex]; layer.initialize(); Console.WriteLine("Layer: " + (layerIndex + 1) + "/" + layers.Count); EdgeDetectionAlgorithm algorithm = layer.algorithm; DateTime trainingStart = DateTime.Now; float totalLoss = 0; int totalNumberOfFiles = numberOfTrainingSetPasses * fileList.Count; int totalIndex = 0; for (int pass = 0; pass < numberOfTrainingSetPasses; pass++) { ListUtils.Shuffle(fileList); int index = 1; float totalPassLoss = 0; DateTime trainingPassStart = DateTime.Now; foreach (string trainingFileName in fileList) { DateTime start = DateTime.Now; Console.WriteLine("Pass: "******"/" + numberOfTrainingSetPasses + ", " + index + "/" + fileList.Count + " Training file: " + Path.GetFileName(trainingFileName)); ImageDescription inputImage = ImageFileHandler.loadFromPath(trainingFileName); int layerResizeFactor = layer.resizeFactor; ImageDescription computedImage = null; if (layerIndex > 0) { List <ImageDescription> computedImages = nestedAlgorithm.computeImageForLayers(inputImage, layerIndex); computedImage = computedImages[layerIndex - 1]; } ImageDescription inputImageGroundTruth = ImageFileHandler.loadFromPath(benchmark.getTrainingFileGroundTruth(trainingFileName)); inputImageGroundTruth = blackAndWhiteConverter.filter(inputImageGroundTruth); ImageDescription newInputImage = null; ImageDescription newInputImageGroundTruth = null; ResizeFilter resizeGrayscale = new ResizeFilter(inputImage.sizeX / layerResizeFactor, inputImage.sizeY / layerResizeFactor, ImageDescriptionUtil.grayscaleChannel); ResizeFilter resizeColor = new ResizeFilter(inputImage.sizeX / layerResizeFactor, inputImage.sizeY / layerResizeFactor, ImageDescriptionUtil.colorChannels); if (layerResizeFactor == 1) { newInputImage = inputImage; newInputImageGroundTruth = inputImageGroundTruth; } else { newInputImage = resizeColor.filter(inputImage); newInputImageGroundTruth = resizeGrayscale.filter(inputImageGroundTruth); } if (layerIndex > 0) { ImageDescription resizedComputed = resizeGrayscale.filter(computedImage); newInputImage.setColorChannel(ColorChannelEnum.Layer, resizedComputed.gray); } float loss = algorithm.train(newInputImage, newInputImageGroundTruth); totalLoss += loss; totalPassLoss += loss; index++; totalIndex++; double timeElapsed = (DateTime.Now - start).TotalSeconds; double timeElapsedSoFar = (DateTime.Now - trainingStart).TotalSeconds; double estimatedTime = (timeElapsedSoFar / totalIndex) * (totalNumberOfFiles - totalIndex); Console.WriteLine("Loss: " + loss.ToString("0.00") + " Time: " + timeElapsed.ToString("0.00") + "s Time elapsed: " + timeElapsedSoFar.ToString("0.00") + "s ETA: " + estimatedTime.ToString("0.00") + "s"); } double tariningPassTimeElapsed = (DateTime.Now - trainingPassStart).TotalSeconds; Console.WriteLine("Pass took " + tariningPassTimeElapsed.ToString("0.00") + " sec. Pass loss: " + totalPassLoss.ToString("0.00") + " Avg loss: " + (totalPassLoss / (fileList.Count)).ToString("0.00")); } double totalTimeElapsed = (DateTime.Now - trainingStart).TotalSeconds; Console.WriteLine("Training took " + totalTimeElapsed.ToString("0.00") + " sec. Total loss: " + totalLoss.ToString("0.00") + " Avg loss: " + (totalLoss / (totalNumberOfFiles)).ToString("0.00")); } Console.WriteLine("Training blender"); DateTime blenderTrainingStart = DateTime.Now; float blenderTotalLoss = 0; int blenderTotalNumberOfFiles = /* numberOfTrainingSetPasses * */ fileList.Count; int blenderTotalIndex = 0; ImageBlender blender = nestedAlgorithm.getImageBlender(); //for (int pass = 0; pass < numberOfTrainingSetPasses; pass++) { ListUtils.Shuffle(fileList); int index = 1; float totalPassLoss = 0; DateTime trainingPassStart = DateTime.Now; foreach (string trainingFileName in fileList) { DateTime start = DateTime.Now; //Console.Write("Pass: "******"/" + numberOfTrainingSetPasses + ", "); Console.WriteLine(index + "/" + fileList.Count + " Training file: " + Path.GetFileName(trainingFileName)); ImageDescription inputImage = ImageFileHandler.loadFromPath(trainingFileName); List <ImageDescription> computedImages = nestedAlgorithm.computeImageForLayers(inputImage, layers.Count); ImageDescription inputImageGroundTruth = ImageFileHandler.loadFromPath(benchmark.getTrainingFileGroundTruth(trainingFileName)); inputImageGroundTruth = blackAndWhiteConverter.filter(inputImageGroundTruth); float blenderLoss = blender.train(computedImages, inputImageGroundTruth); blenderTotalLoss += blenderLoss; totalPassLoss += blenderLoss; index++; blenderTotalIndex++; double timeElapsed = (DateTime.Now - start).TotalSeconds; double timeElapsedSoFar = (DateTime.Now - blenderTrainingStart).TotalSeconds; double estimatedTime = (timeElapsedSoFar / blenderTotalIndex) * (blenderTotalNumberOfFiles - blenderTotalIndex); Console.WriteLine("Loss: " + blenderLoss.ToString("0.00") + " Time: " + timeElapsed.ToString("0.00") + "s Time elapsed: " + timeElapsedSoFar.ToString("0.00") + "s ETA: " + estimatedTime.ToString("0.00") + "s"); } //double tariningPassTimeElapsed = (DateTime.Now - trainingPassStart).TotalSeconds; //Console.WriteLine("Pass took " + tariningPassTimeElapsed.ToString("0.00") + " sec. Pass loss: " + totalPassLoss.ToString("0.00") //+ " Avg loss: " + (totalPassLoss / (fileList.Count)).ToString("0.00")); } double blenderTotalTimeElapsed = (DateTime.Now - blenderTrainingStart).TotalSeconds; Console.WriteLine("Training took " + blenderTotalTimeElapsed.ToString("0.00") + " sec. Total loss: " + blenderTotalLoss.ToString("0.00") + " Avg loss: " + (blenderTotalLoss / (blenderTotalNumberOfFiles)).ToString("0.00")); }
public void testNestedAlgorithm(ContextualMemoryNestedAlgorithm nestedAlgorithm) { DateTime testingStart = DateTime.Now; List <String> fileList = benchmark.getTestFilesPathList(); int index = 1; string outputDirectory = null; foreach (string testFileName in fileList) { DateTime start = DateTime.Now; outputDirectory = Path.GetDirectoryName(benchmark.getTestFileOutputPathWithoutExtension(testFileName)); if (!Directory.Exists(outputDirectory)) { Directory.CreateDirectory(outputDirectory); } Console.WriteLine(index + "/" + fileList.Count + " Testing file: " + Path.GetFileName(testFileName)); ImageDescription inputImage = ImageFileHandler.loadFromPath(testFileName); List <ContextualMemoryNestedAlgorithmLayer> layers = nestedAlgorithm.getLayers(); List <ImageDescription> computedImages = nestedAlgorithm.computeImageForLayers(inputImage, layers.Count); for (int i = 0; i < layers.Count; i++) { if (layers[i].outputResults) { ImageFileHandler.saveToPath(computedImages[i], benchmark.getTestFileOutputPathWithoutExtension(testFileName) + "_layer" + i, outputFileExtension); } } ImageDescription outputImage = nestedAlgorithm.getImageBlender().blendImages(computedImages); ImageFileHandler.saveToPath(outputImage, benchmark.getTestFileOutputPathWithoutExtension(testFileName), outputFileExtension); double timeElapsed = (DateTime.Now - start).TotalSeconds; double timeElapsedSoFar = (DateTime.Now - testingStart).TotalSeconds; double estimatedTime = (timeElapsedSoFar / index) * (fileList.Count - index); Console.WriteLine(timeElapsed.ToString("0.00") + "s Time elapsed: " + timeElapsedSoFar.ToString("0.00") + "s ETA: " + estimatedTime.ToString("0.00") + "s"); index++; } double totalTimeElapsed = (DateTime.Now - testingStart).TotalSeconds; Console.WriteLine("Testing took " + totalTimeElapsed.ToString("0.00") + " sec."); if (testOnTrainingFiles) { Console.WriteLine("Testing on training files"); testingStart = DateTime.Now; index = 0; // we have the outputDirectory from test, else, relative to the exe outputDirectory = Path.Combine(outputDirectory, trainingFilesTestOutput); if (!Directory.Exists(outputDirectory)) { Directory.CreateDirectory(outputDirectory); } fileList = new List <string>(benchmark.getTrainingFilesPathList()); foreach (string trainingFileName in fileList) { DateTime start = DateTime.Now; string outputPath = Path.Combine(outputDirectory, Path.GetFileNameWithoutExtension(trainingFileName)); Console.WriteLine((index + 1) + "/" + fileList.Count + " Testing file: " + Path.GetFileName(trainingFileName)); ImageDescription inputImage = ImageFileHandler.loadFromPath(trainingFileName); List <ContextualMemoryNestedAlgorithmLayer> layers = nestedAlgorithm.getLayers(); List <ImageDescription> computedImages = nestedAlgorithm.computeImageForLayers(inputImage, layers.Count); for (int i = 0; i < layers.Count; i++) { if (layers[i].outputResults) { ImageFileHandler.saveToPath(computedImages[i], outputPath + "_layer" + i, outputFileExtension); } } ImageDescription outputImage = nestedAlgorithm.getImageBlender().blendImages(computedImages); ImageFileHandler.saveToPath(outputImage, outputPath, outputFileExtension); index++; double timeElapsed = (DateTime.Now - start).TotalSeconds; Console.WriteLine(timeElapsed.ToString("0.00") + " seconds"); } totalTimeElapsed = (DateTime.Now - testingStart).TotalSeconds; Console.WriteLine("Testing on training files took " + totalTimeElapsed.ToString("0.00") + " sec."); } }
private static void trainTestAndSaveNestedAlgorithm() { string relativeImageOutputFolder = "cm m20 collisions 4layers thr1 1 2 4 8 canny kirsh nms newderivative (gauss) square l16 squaremix"; string outputModelFilename = relativeImageOutputFolder + ".alg"; int numberOfPasses = 1; int? trainingSetSizeLimit = null; bool useRotations = false; bool testOnTrainingFiles = false; ISet <ColorChannelEnum> colorChannels = new HashSet <ColorChannelEnum> { ColorChannelEnum.Red, ColorChannelEnum.Green, ColorChannelEnum.Blue, ColorChannelEnum.Canny, ColorChannelEnum.Kirsch }; ISet <ColorChannelEnum> colorAndComputedChannels = new HashSet <ColorChannelEnum> { ColorChannelEnum.Red, ColorChannelEnum.Green, ColorChannelEnum.Blue, ColorChannelEnum.Canny, ColorChannelEnum.Kirsch, ColorChannelEnum.Layer }; ContextualMemoryNestedAlgorithm nestedAlgorithm = new ContextualMemoryNestedAlgorithm(); ContextualMemoryNestedAlgorithmLayer layer0 = new ContextualMemoryNestedAlgorithmLayer(); layer0.colorChannels = colorChannels; layer0.longestContextLength = 16; layer0.numberOfRays = 16; layer0.tableSizeBits = 20; layer0.resizeFactor = 1; layer0.outputResults = true; nestedAlgorithm.addLayer(layer0); ContextualMemoryNestedAlgorithmLayer layer1 = new ContextualMemoryNestedAlgorithmLayer(); layer1.colorChannels = colorAndComputedChannels; layer1.longestContextLength = 16; layer1.numberOfRays = 16; layer1.tableSizeBits = 20; layer1.resizeFactor = 2; layer1.outputResults = true; nestedAlgorithm.addLayer(layer1); ContextualMemoryNestedAlgorithmLayer layer2 = new ContextualMemoryNestedAlgorithmLayer(); layer2.colorChannels = colorAndComputedChannels; layer2.longestContextLength = 16; layer2.numberOfRays = 16; layer2.tableSizeBits = 20; layer2.resizeFactor = 4; layer2.outputResults = true; nestedAlgorithm.addLayer(layer2); ContextualMemoryNestedAlgorithmLayer layer3 = new ContextualMemoryNestedAlgorithmLayer(); layer3.colorChannels = colorAndComputedChannels; layer3.longestContextLength = 16; layer3.numberOfRays = 16; layer3.tableSizeBits = 19; layer3.resizeFactor = 8; layer3.outputResults = true; nestedAlgorithm.addLayer(layer3); //nestedAlgorithm.setImageBlender(new SimpleGrayscaleImageBlender()); nestedAlgorithm.setImageBlender(new LogisticMixGrayscaleImageBlender(nestedAlgorithm.getLayers().Count)); BerkeleyEdgeDetectionBenchmark benchmark = new BerkeleyEdgeDetectionBenchmark(localBenchmarkPath, Path.Combine(localBenchmarkPath, relativeImageOutputFolder), useRotations, false, trainingSetSizeLimit); EdgeDetectionProcessor processor = new EdgeDetectionProcessor(benchmark, numberOfPasses, testOnTrainingFiles); Console.WriteLine("Training started."); processor.trainNestedAlgorithm(nestedAlgorithm); Console.WriteLine("Training finished."); EdgeDetectionAlgorithmUtil.saveToCompressedFile(nestedAlgorithm, outputModelFilename); nestedAlgorithm = null; EdgeDetectionAlgorithm algorithm = EdgeDetectionAlgorithmUtil.loadAlgorithmFromCompressedFile(outputModelFilename); Console.WriteLine("Testing started."); processor.testNestedAlgorithm((ContextualMemoryNestedAlgorithm)algorithm); Console.WriteLine("Testing finished."); }