コード例 #1
0
ファイル: HelpCommand.cs プロジェクト: 11646729/iSeismic
 public void Execute(ConsoleEnvironment env, string[] args)
 {
     if (args.Length > 0)
     {
         IConsoleCommand value;
         if (!env.Commands.TryGetValue(args[0], out value))
         {
             env.log.Error("Can't find help for '{0}'", args[0]);
             return;
         }
         env.log.Info(value.Usage ?? "No Help available");
         return;
     }
     env.log.Info("Available commands");
     foreach (var group in env.Commands.GroupBy(p => p.Value).OrderBy(c => c.GetType().Name))
     {
         var keys = string.Join(", ", group.Select(p => p.Key.ToUpperInvariant()));
         env.log.Info("  {0}", keys);
         var usage = @group.Key.Usage;
         if (!string.IsNullOrWhiteSpace(usage))
         {
             env.log.Debug("    {0}", usage);
         }
     }
 }
コード例 #2
0
ファイル: StoryCommand.cs プロジェクト: 11646729/iSeismic
        public void Execute(ConsoleEnvironment env, string[] args)
        {
            if (args.Length > 0)
            {
                var myId = 1;
                int.TryParse(args[0], out myId);
            }

            var id = new DrillingDepartmentId(1);

            var story = new List<Command>
                {
                    // create some Command messages that are defined in Messages.cs
                    // and were auto-generated by lokad-codedsl from the text in Messages.ddd
            //                    new OpenDrillingDepartment(id),
                    new ImportPlannedDepartmentStructureFromBid(id, new RequestId()),
                };

            // we have a story as a list of Commands, now send each one of the Commands to
            // the Application Service that is hosting the DrillingDepartment Aggregate
            // the Events generated by the DrillingDepartment Aggregate's that process the Commands will be
            // output to the console in a human-readable way and can be read like a "story about a day in this department"
            foreach (var command in story)
            {
                env.DrillingDepartmentAppService.Execute(command);
            }
        }
コード例 #3
0
        public void Execute(ConsoleEnvironment env, string[] args)
        {
            if (args.Length != 1)
                throw new ArgumentException("Expected at least 1 args");

            var id = int.Parse(args[0]);
            env.DrillingDepartmentAppService.When(new CreateDrillingDepartmentPlan(new DrillingDepartmentId(id), new RequestId()));
            env.log.Info("Drilling Department Plan Created!");
        }
コード例 #4
0
        public void Execute(ConsoleEnvironment env, string[] args)
        {
            if (args.Length != 1)
                env.log.Error("Expected at least 1 args");

            var id = int.Parse(args[0]);
            env.DrillingDepartmentAppService.When(new DrillShotPoints(new DrillingDepartmentId(id), new RequestId()));
            env.log.Info("Shotpoints Drilled!");
        }
コード例 #5
0
        public void Execute(ConsoleEnvironment env, string[] args)
        {
            if (args.Length != 1)
                throw new ArgumentException("Expected at least 1 args");

            var id = int.Parse(args[0]);
            env.DrillingDepartmentAppService.When(new AssignTargetMetricsToDrillWorkunits(new DrillingDepartmentId(id), new RequestId()));
            env.log.Info("Target Metrics Assigned!");
        }
        public void Execute(ConsoleEnvironment env, string[] args)
        {
            if (args.Length != 1)
                throw new ArgumentException("Expected at least 1 args");

            var id = int.Parse(args[0]);
            env.DrillingDepartmentAppService.When(new CalculateStoreOmittedOrPartlyCompletedShotPoints(new DrillingDepartmentId(id), new RequestId()));
            env.log.Info("Omitted Or Partly Completed ShotPoints Calculated!");
        }
        public void Execute(ConsoleEnvironment env, string[] args)
        {
            if (args.Length != 1)
                throw new ArgumentException("Expected at least 1 args");

            var id = int.Parse(args[0]);
            env.DrillingDepartmentAppService.When(new IssueMapsLineTracesGpsCordinatesToDrillWorkunits(new DrillingDepartmentId(id), new RequestId()));
            env.log.Info("Maps Issued to Drill Workunits!");
        }
        public void Execute(ConsoleEnvironment env, string[] args)
        {
            if (args.Length != 1)
                throw new ArgumentException("Expected 1 args");

            var id = int.Parse(args[0]);
            env.DrillingDepartmentAppService.When(new SendMapsLineTracesGpsCordinatesToTheChiefDriller(new DrillingDepartmentId(id), new RequestId()));
            env.log.Info("Maps Sent to Chief Driller!");
        }
コード例 #9
0
 public void Execute(ConsoleEnvironment env, string[] args)
 {
     if (args.Length == 0)
     {
         env.Log.Error("You must specify action name");
         return;
     }
     env.Tenant.When(new CaptureInboxEntry(env.Id, Guid.Empty, string.Join(" ", args)));
 }
コード例 #10
0
        public void Execute(ConsoleEnvironment env, string[] args)
        {
            const int wginteger = 1000;
            var requestId = new RequestId(Guid.NewGuid());
            var workgroupName = string.Join(" ", args);
            var we = new WorkgroupEntity(wginteger, requestId, workgroupName);

            env.DrillingDepartmentAppService.When(new AddPlannedWorkgroupToDepartment(env.Session.SystemId, requestId, we));

            env.log.Info("Workgroup added to Department!");
        }
コード例 #11
0
        public void Execute(ConsoleEnvironment env, string[] args)
        {
            if (args.Length != 3)
                throw new ArgumentException("Expected 3 args");

            var id = int.Parse(args[0]);
            // TODO - Fix lines below
            //            var employee = string.Join(" ", args.Skip(1));
            //            var employee = string.Join(" ", args.Skip(2));
            env.DrillingDepartmentAppService.When(new SendSurveyedPointsToChiefDriller(new DrillingDepartmentId(id), new RequestId(), new DateTime()));
            env.log.Info("Surveyed Points Issued to Drill Workunits!");
        }
コード例 #12
0
ファイル: ViewWorkgroups.cs プロジェクト: 11646729/iSeismic
        public void Execute(ConsoleEnvironment env, string[] args)
        {
            var entries = env.Session.GetCurrentSystem();
            var workgroups = entries.Workgroups;
            env.log.Info("Inbox ({0} Workgroups)", workgroups.Count);

            foreach (var entry in workgroups)
            {
                var shortId = env.Session.MakePartialKey(entry.Key.Id);
                env.log.Info(string.Format("  {0}  {1, -20}  {2, -20} {3, -20}", shortId, entry.Value.WorkgroupNumber, entry.Value.Name, entry.Value.Type));
            }
        }
コード例 #13
0
 public void Execute(ConsoleEnvironment env, string[] args)
 {
     if (args.Length != 2)
     {
         throw new ArgumentException("Expected 1 args");
     }
     var id = int.Parse(args[0]);
     // TODO - Fix lines below
     // var employee = string.Join(" ", args.Skip(1));
     env.DrillingDepartmentAppService.When(new AmendActualDrillWorkunitResources(new DrillingDepartmentId(id), new RequestId()));
     env.log.Info("Actual Drill Workunit Resources Amended!");
 }
コード例 #14
0
        public void Execute(ConsoleEnvironment env, string[] args)
        {
            if (!env.Inbox.Inbox.ContainsKey(env.Id))
            {
                env.Log.Error("Tenant not defined");
                return;
            }
            env.Log.Info("Inbox {0}", env.Id.Id);

            foreach (var entry in env.Inbox.Inbox[env.Id].Items)
            {
                env.Log.Info(entry);
            }
        }
コード例 #15
0
        public void Execute(ConsoleEnvironment env, string[] args)
        {
            if (args.Length < 2)
            {
                throw new KnownConsoleInputError("At least 2 arguments are expected");
            }
            var item = env.Session.MatchItem(args[0]);
            var newName = string.Join(" ", args.Skip(1));

            var workgroupentity = item as WorkgroupEntityView;
            if (workgroupentity != null)
            {
                env.DrillingDepartmentAppService.When(new ChangeWorkgroupName(env.Session.SystemId, workgroupentity.Id, newName));
                env.log.Info("Workgroup name changed!");
                return;
            }
        }
コード例 #16
0
        static void Main(string[] args)
        {
            var onnxModel      = Path.Combine("Assets", "Model", "model.onnx");
            var imagePathsData = Path.Combine("Assets", "Data", "images.tsv");
            var imageFolder    = Path.Combine("Assets", "Images");

            using (var environment = new ConsoleEnvironment())
            {
                var imageHeight = 64;
                var imageWidth  = 64;

                var loader = TextLoader.CreateReader(environment, context => (
                                                         ImagePath: context.LoadText(0),
                                                         Name: context.LoadText(1)),
                                                     separator: '\t',
                                                     hasHeader: false);

                var data = loader.Read(new MultiFileSource(imagePathsData));

                var estimator = loader.MakeNewEstimator()
                                .Append(row => (
                                            Name: row.Name,
                                            input: row.ImagePath.LoadAsImage(imageFolder).AsGrayscale().Resize(imageWidth, imageHeight).ExtractPixels()))
                                .Append(row => (row.Name, EmotionScores: row.input.ApplyOnnxModel(onnxModel)));

                var model = estimator.Fit(data);

                var predictionFunction = model.AsDynamic.MakePredictionFunction <EmotionData, EmotionPrediction>(environment);

                var prediction = predictionFunction.Predict(new EmotionData()
                {
                    ImagePath = "1.jpg"
                });

                int emotion = GetEmotion(prediction.PredictedLabels);

                Console.WriteLine(GetEmotionString(emotion));

                Console.ReadLine();
            }
        }
コード例 #17
0
        [ConditionalFact(typeof(Environment), nameof(Environment.Is64BitProcess))] // LightGBM is 64-bit only
        public void MultiClassLightGBM()
        {
            var env        = new ConsoleEnvironment(seed: 0);
            var dataPath   = GetDataPath(TestDatasets.iris.trainFilename);
            var dataSource = new MultiFileSource(dataPath);

            var ctx    = new MulticlassClassificationContext(env);
            var reader = TextLoader.CreateReader(env,
                                                 c => (label: c.LoadText(0), features: c.LoadFloat(1, 4)));

            OvaPredictor pred = null;

            // With a custom loss function we no longer get calibrated predictions.
            var est = reader.MakeNewEstimator()
                      .Append(r => (label: r.label.ToKey(), r.features))
                      .Append(r => (r.label, preds: ctx.Trainers.LightGbm(
                                        r.label,
                                        r.features, onFit: p => pred = p)));

            var pipe = reader.Append(est);

            Assert.Null(pred);
            var model = pipe.Fit(dataSource);

            Assert.NotNull(pred);

            var data = model.Read(dataSource);

            // Just output some data on the schema for fun.
            var schema = data.AsDynamic.Schema;

            for (int c = 0; c < schema.ColumnCount; ++c)
            {
                Console.WriteLine($"{schema.GetColumnName(c)}, {schema.GetColumnType(c)}");
            }

            var metrics = ctx.Evaluate(data, r => r.label, r => r.preds, 2);

            Assert.True(metrics.LogLoss > 0);
            Assert.True(metrics.TopKAccuracy > 0);
        }
コード例 #18
0
        public void SetupIrisPipeline()
        {
            _irisExample = new IrisData()
            {
                SepalLength = 3.3f,
                SepalWidth  = 1.6f,
                PetalLength = 0.2f,
                PetalWidth  = 5.1f,
            };

            string _irisDataPath = Program.GetInvariantCultureDataPath("iris.txt");

            using (var env = new ConsoleEnvironment(seed: 1, conc: 1, verbose: false, sensitivity: MessageSensitivity.None, outWriter: EmptyWriter.Instance))
            {
                var reader = new TextLoader(env,
                                            new TextLoader.Arguments()
                {
                    Separator = "\t",
                    HasHeader = true,
                    Column    = new[]
                    {
                        new TextLoader.Column("Label", DataKind.R4, 0),
                        new TextLoader.Column("SepalLength", DataKind.R4, 1),
                        new TextLoader.Column("SepalWidth", DataKind.R4, 2),
                        new TextLoader.Column("PetalLength", DataKind.R4, 3),
                        new TextLoader.Column("PetalWidth", DataKind.R4, 4),
                    }
                });

                IDataView data = reader.Read(new MultiFileSource(_irisDataPath));

                var pipeline = new ConcatEstimator(env, "Features", new[] { "SepalLength", "SepalWidth", "PetalLength", "PetalWidth" })
                               .Append(new SdcaMultiClassTrainer(env, new SdcaMultiClassTrainer.Arguments {
                    NumThreads = 1, ConvergenceTolerance = 1e-2f
                }, "Features", "Label"));

                var model = pipeline.Fit(data);

                _irisModel = model.MakePredictionFunction <IrisData, IrisPrediction>(env);
            }
        }
コード例 #19
0
        [ConditionalFact(typeof(Environment), nameof(Environment.Is64BitProcess))] // LightGBM is 64-bit only
        public void LightGbmBinaryClassification()
        {
            var env        = new ConsoleEnvironment(seed: 0);
            var dataPath   = GetDataPath(TestDatasets.breastCancer.trainFilename);
            var dataSource = new MultiFileSource(dataPath);
            var ctx        = new BinaryClassificationContext(env);

            var reader = TextLoader.CreateReader(env,
                                                 c => (label: c.LoadBool(0), features: c.LoadFloat(1, 9)));

            IPredictorWithFeatureWeights <float> pred = null;

            var est = reader.MakeNewEstimator()
                      .Append(r => (r.label, preds: ctx.Trainers.LightGbm(r.label, r.features,
                                                                          numBoostRound: 10,
                                                                          numLeaves: 5,
                                                                          learningRate: 0.01,
                                                                          onFit: (p) => { pred = p; })));

            var pipe = reader.Append(est);

            Assert.Null(pred);
            var model = pipe.Fit(dataSource);

            Assert.NotNull(pred);

            // 9 input features, so we ought to have 9 weights.
            VBuffer <float> weights = new VBuffer <float>();

            pred.GetFeatureWeights(ref weights);
            Assert.Equal(9, weights.Length);

            var data = model.Read(dataSource);

            var metrics = ctx.Evaluate(data, r => r.label, r => r.preds);

            // Run a sanity check against a few of the metrics.
            Assert.InRange(metrics.Accuracy, 0, 1);
            Assert.InRange(metrics.Auc, 0, 1);
            Assert.InRange(metrics.Auprc, 0, 1);
        }
コード例 #20
0
        [ConditionalFact(typeof(Environment), nameof(Environment.Is64BitProcess))] // LightGBM is 64-bit only
        public void LightGBMRanking()
        {
            var env        = new ConsoleEnvironment(seed: 0);
            var dataPath   = GetDataPath(TestDatasets.adultRanking.trainFilename);
            var dataSource = new MultiFileSource(dataPath);

            var ctx = new RankingContext(env);

            var reader = TextLoader.CreateReader(env,
                                                 c => (label: c.LoadFloat(0), features: c.LoadFloat(9, 14), groupId: c.LoadText(1)),
                                                 separator: '\t', hasHeader: true);

            LightGbmRankingPredictor pred = null;

            var est = reader.MakeNewEstimator()
                      .Append(r => (r.label, r.features, groupId: r.groupId.ToKey()))
                      .Append(r => (r.label, r.groupId, score: ctx.Trainers.LightGbm(r.label, r.features, r.groupId, onFit: (p) => { pred = p; })));

            var pipe = reader.Append(est);

            Assert.Null(pred);
            var model = pipe.Fit(dataSource);

            Assert.NotNull(pred);

            var data = model.Read(dataSource);

            var metrics = ctx.Evaluate(data, r => r.label, r => r.groupId, r => r.score);

            Assert.NotNull(metrics);

            Assert.True(metrics.Ndcg.Length == metrics.Dcg.Length && metrics.Dcg.Length == 3);

            Assert.InRange(metrics.Dcg[0], 1.4, 1.6);
            Assert.InRange(metrics.Dcg[1], 1.4, 1.8);
            Assert.InRange(metrics.Dcg[2], 1.4, 1.8);

            Assert.InRange(metrics.Ndcg[0], 36.5, 37);
            Assert.InRange(metrics.Ndcg[1], 36.5, 37);
            Assert.InRange(metrics.Ndcg[2], 36.5, 37);
        }
コード例 #21
0
        public void PrivateGetSetProperties()
        {
            var data = new List <ClassWithGetter>()
            {
                new ClassWithGetter(),
                new ClassWithGetter(),
                new ClassWithGetter()
            };

            using (var env = new ConsoleEnvironment())
            {
                var dataView           = ComponentCreation.CreateDataView(env, data);
                var enumeratorSimple   = dataView.AsEnumerable <ClassWithSetter>(env, false).GetEnumerator();
                var originalEnumerator = data.GetEnumerator();
                while (enumeratorSimple.MoveNext() && originalEnumerator.MoveNext())
                {
                    Assert.True(enumeratorSimple.Current.GetDay == originalEnumerator.Current.Day &&
                                enumeratorSimple.Current.GetHour == originalEnumerator.Current.Hour);
                }
            }
        }
コード例 #22
0
        public void Pkpd()
        {
            var dataPath = GetDataPath(IrisDataPath);

            using (var env = new ConsoleEnvironment())
            {
                var calibrator = new PavCalibratorTrainer(env);

                var data = new TextLoader(env, GetIrisLoaderArgs())
                           .Read(new MultiFileSource(dataPath));

                var sdcaTrainer = new LinearClassificationTrainer(env, new LinearClassificationTrainer.Arguments {
                    MaxIterations = 100, Shuffle = true, NumThreads = 1
                }, "Features", "Label");
                var pipeline = new TermEstimator(env, "Label")
                               .Append(new Pkpd(env, sdcaTrainer))
                               .Append(new KeyToValueEstimator(env, "PredictedLabel"));

                TestEstimatorCore(pipeline, data);
            }
        }
コード例 #23
0
        public void TestWhiteningOldSavingAndLoading()
        {
            var    env        = new ConsoleEnvironment(seed: 0);
            string dataSource = GetDataPath("generated_regression_dataset.csv");
            var    dataView   = TextLoader.CreateReader(env,
                                                        c => (label: c.LoadFloat(11), features: c.LoadFloat(0, 10)),
                                                        separator: ';', hasHeader: true)
                                .Read(dataSource).AsDynamic;
            var pipe = new VectorWhiteningEstimator(env, "features", "whitened");

            var result      = pipe.Fit(dataView).Transform(dataView);
            var resultRoles = new RoleMappedData(result);

            using (var ms = new MemoryStream())
            {
                TrainUtils.SaveModel(Env, Env.Start("saving"), ms, null, resultRoles);
                ms.Position = 0;
                var loadedView = ModelFileUtils.LoadTransforms(Env, dataView, ms);
            }
            Done();
        }
コード例 #24
0
        public void Execute(ConsoleEnvironment env, string[] args)
        {
            if (args.Length != 0)
            {
                throw new ArgumentException("Expected 0 args");
            }

            var entries = env.Session.GetCurrentSystem();
            var workgroups = entries.Workgroups;

            foreach (var entry in workgroups)
            {
            //                if (entry.Value.Structure == null) return;

                // TODO - ADD MISSING COMMAND HERE
                // e.g. env.DrillingDepartmentAppService.When(new AddWorkgroupToPlannedStructure(env.Session.SystemId, requestId, we));

                env.log.Info("The Drilling Department has a Planned Department Structure");
                env.log.Info(" ");
            }
        }
コード例 #25
0
        public void SimpleImageSmokeTest()
        {
            var env = new ConsoleEnvironment(0, verbose: true);

            var reader = TextLoader.CreateReader(env,
                                                 ctx => ctx.LoadText(0).LoadAsImage().AsGrayscale().Resize(10, 8).ExtractPixels());

            var schema = reader.AsDynamic.GetOutputSchema();

            Assert.True(schema.TryGetColumnIndex("Data", out int col), "Could not find 'Data' column");
            var type = schema.GetColumnType(col);

            Assert.True(type.IsKnownSizeVector, $"Type was supposed to be known size vector but was instead '{type}'");
            var vecType = type.AsVector;

            Assert.Equal(NumberType.R4, vecType.ItemType);
            Assert.Equal(3, vecType.DimCount);
            Assert.Equal(3, vecType.GetDim(0));
            Assert.Equal(8, vecType.GetDim(1));
            Assert.Equal(10, vecType.GetDim(2));
        }
コード例 #26
0
        public void OnnxModelMultiInput()
        {
            var modelFile    = Path.Combine(Directory.GetCurrentDirectory(), "twoinput", "twoinput.onnx");
            var env          = new ConsoleEnvironment(seed: 1);
            var samplevector = GetSampleArrayData();

            var dataView = ML.Data.LoadFromEnumerable(
                new TestDataMulti[] {
                new TestDataMulti()
                {
                    ina = new float[] { 1, 2, 3, 4, 5 },
                    inb = new float[] { 1, 2, 3, 4, 5 }
                }
            });
            var pipeline        = ML.Transforms.ApplyOnnxModel(new[] { "outa", "outb" }, new[] { "ina", "inb" }, modelFile);
            var onnxTransformer = pipeline.Fit(dataView);
            var onnx            = onnxTransformer.Transform(dataView);

            var outaCol = onnx.Schema["outa"];
            var outbCol = onnx.Schema["outb"];

            using (var curs = onnx.GetRowCursor(outaCol, onnx.Schema["outb"]))
            {
                var getScoresa = curs.GetGetter <VBuffer <float> >(outaCol);
                var getScoresb = curs.GetGetter <VBuffer <float> >(outbCol);
                var buffera    = default(VBuffer <float>);
                var bufferb    = default(VBuffer <float>);

                while (curs.MoveNext())
                {
                    getScoresa(ref buffera);
                    getScoresb(ref bufferb);
                    Assert.Equal(5, buffera.Length);
                    Assert.Equal(5, bufferb.Length);
                    Assert.Equal(0, buffera.GetValues().ToArray().Sum());
                    Assert.Equal(30, bufferb.GetValues().ToArray().Sum());
                }
            }
            (onnxTransformer as IDisposable)?.Dispose();
        }
コード例 #27
0
        [ConditionalFact(typeof(Environment), nameof(Environment.Is64BitProcess))] // TensorFlow is 64-bit only
        public void TestTensorFlowEntryPoint()
        {
            var dataPath = GetDataPath("Train-Tiny-28x28.txt");

            using (var env = new ConsoleEnvironment(42))
            {
                var experiment = env.CreateExperiment();

                var importInput = new Legacy.Data.TextLoader(dataPath);
                importInput.Arguments.Column = new TextLoaderColumn[]
                {
                    new TextLoaderColumn {
                        Name = "Label", Source = new[] { new TextLoaderRange(0) }
                    },
                    new TextLoaderColumn {
                        Name = "Placeholder", Source = new[] { new TextLoaderRange(1, 784) }
                    }
                };
                var importOutput = experiment.Add(importInput);

                var tfTransformInput = new Legacy.Transforms.TensorFlowScorer
                {
                    Data          = importOutput.Data,
                    ModelLocation = "mnist_model/frozen_saved_model.pb",
                    InputColumns  = new[] { "Placeholder" },
                    OutputColumns = new[] { "Softmax" },
                };
                var tfTransformOutput = experiment.Add(tfTransformInput);

                experiment.Compile();
                experiment.SetInput(importInput.InputFile, new SimpleFileHandle(env, dataPath, false, false));
                experiment.Run();
                var data = experiment.GetOutput(tfTransformOutput.OutputData);

                var schema = data.Schema;
                Assert.Equal(3, schema.ColumnCount);
                Assert.Equal("Softmax", schema.GetColumnName(2));
                Assert.Equal(10, schema.GetColumnType(2).VectorSize);
            }
        }
コード例 #28
0
ファイル: debug.cs プロジェクト: sdpython/csharpyml
        public void Train(string dest)
        {
            using (var env = new ConsoleEnvironment(verbose: false))
            {
                var args = new TextLoader.Arguments()
                {
                    Separator = ",",
                    HasHeader = true,
                    Column    = new TextLoader.Column[] {
                        new TextLoader.Column("Label", DataKind.R4, 0),
                        new TextLoader.Column("Sepal_length", DataKind.R4, 1),
                        new TextLoader.Column("Sepal_width", DataKind.R4, 2),
                        new TextLoader.Column("Petal_length", DataKind.R4, 3),
                        new TextLoader.Column("Petal_width", DataKind.R4, 4),
                    }
                };

                var reader = new TextLoader(env, args);
                var concat = new ColumnConcatenatingEstimator(env,
                                                              "Features", "Sepal_length",
                                                              "Sepal_width", "Petal_length", "Petal_width");
                var km       = new MulticlassLogisticRegression(env, "Label", "Features");
                var pipeline = concat.Append(km);

                IDataView trainingDataView = reader.Read(new MultiFileSource(_dataset));
                var       model            = pipeline.Fit(trainingDataView);

                var obs = new IrisObservation()
                {
                    Sepal_length = 3.3f,
                    Sepal_width  = 1.6f,
                    Petal_length = 0.2f,
                    Petal_width  = 5.1f,
                };

                _fct = model.MakePredictionFunction <IrisObservation, IrisPrediction>(env);
                using (var stdest = File.OpenWrite(dest))
                    model.SaveTo(env, stdest);
            }
        }
コード例 #29
0
        public void TestCustomTransformer()
        {
            string dataPath = GetDataPath("adult.test");
            var    source   = new MultiFileSource(dataPath);
            var    loader   = ML.Data.TextReader(new[] {
                new TextLoader.Column("Float1", DataKind.R4, 0),
                new TextLoader.Column("Float4", DataKind.R4, new[] { new TextLoader.Range(0), new TextLoader.Range(2), new TextLoader.Range(4), new TextLoader.Range(10) })
            }, s => { s.Separator = ","; s.HasHeader = true; });

            var data = loader.Read(source);

            IDataView transformedData;

            // We create a temporary environment to instantiate the custom transformer. This is to ensure that we don't need the same
            // environment for saving and loading.
            using (var tempoEnv = new ConsoleEnvironment())
            {
                var customEst = new CustomMappingEstimator <MyInput, MyOutput>(tempoEnv, MyLambda.MyAction, "MyLambda");

                try
                {
                    TestEstimatorCore(customEst, data);
                    Assert.True(false, "Cannot work without MEF injection");
                }
                catch (Exception)
                {
                    // REVIEW: we should have a common mechanism that will make sure this is 'our' exception thrown.
                }
                ML.CompositionContainer = new CompositionContainer(new TypeCatalog(typeof(MyLambda)));
                TestEstimatorCore(customEst, data);
                transformedData = customEst.Fit(data).Transform(data);
            }

            var inputs  = transformedData.AsEnumerable <MyInput>(ML, true);
            var outputs = transformedData.AsEnumerable <MyOutput>(ML, true);

            Assert.True(inputs.Zip(outputs, (x, y) => y.Together == $"{x.Float1} + {string.Join(", ", x.Float4)}").All(x => x));

            Done();
        }
コード例 #30
0
        /// <summary>
        /// Reads a text file as a IDataView.
        /// Follows pandas API.
        /// </summary>
        /// <param name="filename">filename</param>
        /// <param name="sep">column separator</param>
        /// <param name="header">has a header or not</param>
        /// <param name="names">column names (can be empty)</param>
        /// <param name="dtypes">column types (can be empty)</param>
        /// <param name="nrows">number of rows to read</param>
        /// <param name="guess_rows">number of rows used to guess types</param>
        /// <param name="encoding">text encoding</param>
        /// <param name="useThreads">specific to TextLoader</param>
        /// <param name="host">host</param>
        /// <param name="index">add a column to hold the index</param>
        /// <returns>TextLoader</returns>
        public static IDataView ReadCsvToTextLoader(string[] filenames,
                                                    char sep          = ',', bool header = true,
                                                    string[] names    = null, DataViewType[] dtypes = null,
                                                    int nrows         = -1, int guess_rows    = 10,
                                                    Encoding encoding = null, bool useThreads = true,
                                                    bool index        = false, IHost host     = null)
        {
            var df = ReadCsv(filenames[0], sep: sep, header: header, names: names, dtypes: dtypes,
                             nrows: guess_rows, guess_rows: guess_rows, encoding: encoding, index: index);
            var sch  = df.Schema;
            var cols = new TextLoader.Column[sch.Count];

            for (int i = 0; i < cols.Length; ++i)
            {
                cols[i] = TextLoader.Column.Parse(df.NameType(i));
                if (cols[i] == null)
                {
                    throw Contracts.Except("Unable to parse '{0}'.", df.NameType(i));
                }
            }

            var args = new TextLoader.Options()
            {
                AllowQuoting   = false,
                Separators     = new[] { sep },
                Columns        = cols,
                TrimWhitespace = true,
                UseThreads     = useThreads,
                HasHeader      = header,
                MaxRows        = nrows > 0 ? (int?)nrows : null
            };

            if (host == null)
            {
                host = new ConsoleEnvironment().Register("TextLoader");
            }
            var multiSource = new MultiFileSource(filenames);

            return(new TextLoader(host, args, multiSource).Load(multiSource));
        }
コード例 #31
0
        /// <summary>
        /// Process a script to be parsed (from the input resource).
        /// </summary>
        private static void Process(IndentingTextWriter wrt, string text, ArgsBase defaults)
        {
            var env = new ConsoleEnvironment(seed: 42);

            using (wrt.Nest())
            {
                var args1 = defaults.Clone();
                using (wrt.Nest())
                {
                    if (!CmdParser.ParseArguments(env, text, args1, s => wrt.WriteLine("*** {0}", s)))
                    {
                        wrt.WriteLine("*** Failed!");
                    }
                }
                string str1 = args1.ToString();
                wrt.WriteLine("ToString: {0}", str1);
                string settings1 = CmdParser.GetSettings(env, args1, defaults, SettingsFlags.None);
                wrt.WriteLine("Settings: {0}", settings1);

                var args2 = defaults.Clone();
                using (wrt.Nest())
                {
                    if (!CmdParser.ParseArguments(env, settings1, args2, s => wrt.WriteLine("*** BUG: {0}", s)))
                    {
                        wrt.WriteLine("*** BUG: parsing result of GetSettings failed!");
                    }
                }
                string str2 = args2.ToString();
                if (str1 != str2)
                {
                    wrt.WriteLine("*** BUG: ToString Mismatch: {0}", str2);
                }
                string settings2 = CmdParser.GetSettings(env, args2, defaults, SettingsFlags.None);
                if (settings1 != settings2)
                {
                    wrt.WriteLine("*** BUG: Settings Mismatch: {0}", settings2);
                }
            }
        }
コード例 #32
0
        public void PrincipalComponentAnalysis()
        {
            var env        = new ConsoleEnvironment(seed: 0);
            var dataPath   = GetDataPath("generated_regression_dataset.csv");
            var dataSource = new MultiFileSource(dataPath);

            var reader = TextLoader.CreateReader(env,
                                                 c => (label: c.LoadFloat(11), features: c.LoadFloat(0, 10)),
                                                 separator: ';', hasHeader: true);
            var data = reader.Read(dataSource);

            var est = reader.MakeNewEstimator()
                      .Append(r => (r.label,
                                    pca: r.features.ToPrincipalComponents(rank: 5)));
            var tdata  = est.Fit(data).Transform(data);
            var schema = tdata.AsDynamic.Schema;

            Assert.True(schema.TryGetColumnIndex("pca", out int pcaCol));
            var type = schema.GetColumnType(pcaCol);

            Assert.True(type.IsVector && type.IsKnownSizeVector && type.ItemType.IsNumber);
        }
コード例 #33
0
        public void TestTextDatasetLearn()
        {
            using (var env = new ConsoleEnvironment())
            {
                string          pathData           = GetDataPath(@"../UnitTest/tweets_labeled_10k_test_validation.tsv");
                int             batchSize          = 5;
                int             numIterations      = 35;
                int             numTransformLevels = 1;
                int             numSampleRows      = 100;
                SupportedMetric metric             = PipelineSweeperSupportedMetrics.GetSupportedMetric(PipelineSweeperSupportedMetrics.Metrics.AccuracyMicro);

                // Using the simple, uniform random sampling (with replacement) engine
                PipelineOptimizerBase autoMlEngine = new UniformRandomEngine(env);

                // Test initial learning
                var amls = AutoInference.InferPipelines(env, autoMlEngine, pathData, "", out var _, numTransformLevels, batchSize,
                                                        metric, out var _, numSampleRows, new IterationTerminator(numIterations),
                                                        MacroUtils.TrainerKinds.SignatureMultiClassClassifierTrainer);
                env.Check(amls.GetAllEvaluatedPipelines().Length == numIterations);
            }
            Done();
        }
コード例 #34
0
        public void OnnxModelMultiInput()
        {
            var modelFile = Path.Combine(Directory.GetCurrentDirectory(), "twoinput", "twoinput.onnx");

            using (var env = new ConsoleEnvironment(seed: 1, conc: 1))
            {
                var samplevector = GetSampleArrayData();

                var dataView = ML.Data.ReadFromEnumerable(
                    new TestDataMulti[] {
                    new TestDataMulti()
                    {
                        ina = new float[] { 1, 2, 3, 4, 5 },
                        inb = new float[] { 1, 2, 3, 4, 5 }
                    }
                });
                var onnx = ML.Transforms.ApplyOnnxModel(modelFile, new[] { "outa", "outb" }, new[] { "ina", "inb" }).Fit(dataView).Transform(dataView);

                onnx.Schema.TryGetColumnIndex("outa", out int scoresa);
                onnx.Schema.TryGetColumnIndex("outb", out int scoresb);
                using (var curs = onnx.GetRowCursor(onnx.Schema["outa"], onnx.Schema["outb"]))
                {
                    var getScoresa = curs.GetGetter <VBuffer <float> >(scoresa);
                    var getScoresb = curs.GetGetter <VBuffer <float> >(scoresb);
                    var buffera    = default(VBuffer <float>);
                    var bufferb    = default(VBuffer <float>);

                    while (curs.MoveNext())
                    {
                        getScoresa(ref buffera);
                        getScoresb(ref bufferb);
                        Assert.Equal(5, buffera.Length);
                        Assert.Equal(5, bufferb.Length);
                        Assert.Equal(0, buffera.GetValues().ToArray().Sum());
                        Assert.Equal(30, bufferb.GetValues().ToArray().Sum());
                    }
                }
            }
        }
コード例 #35
0
        public void PcaWorkout()
        {
            var    env        = new ConsoleEnvironment(seed: 1, conc: 1);
            string dataSource = GetDataPath("generated_regression_dataset.csv");
            var    data       = TextLoader.CreateReader(env,
                                                        c => (label: c.LoadFloat(11), features: c.LoadFloat(0, 10)),
                                                        separator: ';', hasHeader: true)
                                .Read(new MultiFileSource(dataSource));

            var invalidData = TextLoader.CreateReader(env,
                                                      c => (label: c.LoadFloat(11), features: c.LoadText(0, 10)),
                                                      separator: ';', hasHeader: true)
                              .Read(new MultiFileSource(dataSource));

            var est = new PcaEstimator(env, "features", "pca", rank: 5, advancedSettings: s => {
                s.Seed = 1;
            });

            // The following call fails because of the following issue
            // https://github.com/dotnet/machinelearning/issues/969
            // TestEstimatorCore(est, data.AsDynamic, invalidInput: invalidData.AsDynamic);

            var outputPath = GetOutputPath("PCA", "pca.tsv");

            using (var ch = env.Start("save"))
            {
                var saver = new TextSaver(env, new TextSaver.Arguments {
                    Silent = true, OutputHeader = false
                });
                IDataView savedData = TakeFilter.Create(env, est.Fit(data.AsDynamic).Transform(data.AsDynamic), 4);
                savedData = new ChooseColumnsTransform(env, savedData, "pca");

                using (var fs = File.Create(outputPath))
                    DataSaverUtils.SaveDataView(ch, saver, savedData, fs, keepHidden: true);
            }

            CheckEquality("PCA", "pca.tsv");
            Done();
        }
コード例 #36
0
        public void LambdaTransformCreate()
        {
            using (var env = new ConsoleEnvironment(42))
            {
                var data = ReadBreastCancerExamples();
                var idv  = env.CreateDataView(data);

                var filter = LambdaTransform.CreateFilter <BreastCancerExample, object>(env, idv,
                                                                                        (input, state) => input.Label == 0, null);

                Assert.Null(filter.GetRowCount());

                // test re-apply
                var applied = env.CreateDataView(data);
                applied = ApplyTransformUtils.ApplyAllTransformsToData(env, filter, applied);

                var saver = new TextSaver(env, new TextSaver.Arguments());
                Assert.True(applied.Schema.TryGetColumnIndex("Label", out int label));
                using (var fs = File.Create(GetOutputPath(OutputRelativePath, "lambda-output.tsv")))
                    saver.SaveData(fs, applied, label);
            }
        }
コード例 #37
0
        private static (IEnumerable <string> epListContents, JObject manifest) BuildManifests()
        {
            ConsoleEnvironment env = new ConsoleEnvironment();

            foreach (Type type in _types)
            {
                env.ComponentCatalog.RegisterAssembly(type.Assembly);
            }

            var catalog = env.ComponentCatalog;

            var regex          = new Regex(@"\r\n?|\n", RegexOptions.Compiled);
            var epListContents = catalog.AllEntryPoints()
                                 .Select(x => string.Join("\t",
                                                          x.Name,
                                                          regex.Replace(x.Description, ""),
                                                          x.Method.DeclaringType,
                                                          x.Method.Name,
                                                          x.InputType,
                                                          x.OutputType)
                                         .Replace(Environment.NewLine, "", StringComparison.Ordinal))
                                 .OrderBy(x => x);

            var manifest = JsonManifestUtils.BuildAllManifests(env, catalog);

            //clean up the description from the new line characters
            if (manifest[FieldNames.TopEntryPoints] != null && manifest[FieldNames.TopEntryPoints] is JArray)
            {
                foreach (JToken entry in manifest[FieldNames.TopEntryPoints].Children())
                {
                    if (entry[FieldNames.Desc] != null)
                    {
                        entry[FieldNames.Desc] = regex.Replace(entry[FieldNames.Desc].ToString(), "");
                    }
                }
            }

            return(epListContents, manifest);
        }
コード例 #38
0
        public void OVAWithAllConstructorArgs()
        {
            var    dataPath = GetDataPath(IrisDataPath);
            string featNam  = "Features";
            string labNam   = "Label";

            using (var env = new ConsoleEnvironment())
            {
                var calibrator = new FixedPlattCalibratorTrainer(env, new FixedPlattCalibratorTrainer.Arguments());

                var data = new TextLoader(env, GetIrisLoaderArgs()).Read(new MultiFileSource(dataPath));

                var averagePerceptron = new AveragedPerceptronTrainer(env, new AveragedPerceptronTrainer.Arguments {
                    FeatureColumn = featNam, LabelColumn = labNam, Shuffle = true, Calibrator = null
                });
                var pipeline = new TermEstimator(env, labNam)
                               .Append(new Ova(env, averagePerceptron, labNam, true, calibrator: calibrator, 10000, true))
                               .Append(new KeyToValueEstimator(env, "PredictedLabel"));

                TestEstimatorCore(pipeline, data);
            }
        }
コード例 #39
0
        public IRowCursor[] GetRowCursorSet(out IRowCursorConsolidator consolidator, Func <int, bool> predicate, int n, IRandom rand = null)
        {
            var host = new ConsoleEnvironment().Register("Estimate n threads");

            n = DataViewUtils.GetThreadCount(host, n);

            if (n <= 1)
            {
                consolidator = null;
                return(new IRowCursor[] { GetRowCursor(predicate, rand) });
            }
            else
            {
                var cursors = Source.GetRowCursorSet(out consolidator, i => predicate(i) || predicate(SchemaHelper.NeedColumn(_columnMapping, i)),
                                                     n, rand);
                for (int i = 0; i < cursors.Length; ++i)
                {
                    cursors[i] = new AddRandomCursor(this, cursors[i]);
                }
                return(cursors);
            }
        }
コード例 #40
0
        /// <summary>
        /// Creates a new environment. It should be done
        /// with <tt>using</tt>.
        /// </summary>
        public static ConsoleEnvironment NewTestEnvironment(int?seed = null, bool verbose = false,
                                                            MessageSensitivity sensitivity = (MessageSensitivity)(-1),
                                                            int conc = 0, TextWriter outWriter = null, TextWriter errWriter = null)
        {
            if (!seed.HasValue)
            {
                seed = 42;
            }
            if (outWriter == null)
            {
                outWriter = new StreamWriter(new MemoryStream());
            }
            if (errWriter == null)
            {
                errWriter = new StreamWriter(new MemoryStream());
            }

            var env = new ConsoleEnvironment(seed, verbose, sensitivity, conc, outWriter, errWriter);

            ComponentHelper.AddStandardComponents(env);
            return(env);
        }
コード例 #41
0
        public void ConcatWith()
        {
            var env      = new ConsoleEnvironment(seed: 0);
            var dataPath = GetDataPath("iris.data");
            var reader   = TextLoader.CreateReader(env,
                                                   c => (label: c.LoadText(4), values: c.LoadFloat(0, 3), value: c.LoadFloat(2)),
                                                   separator: ',');
            var dataSource = new MultiFileSource(dataPath);
            var data       = reader.Read(dataSource);

            var est = data.MakeNewEstimator()
                      .Append(r => (
                                  r.label, r.values, r.value,
                                  c0: r.label.AsVector(), c1: r.label.ConcatWith(r.label),
                                  c2: r.value.ConcatWith(r.values), c3: r.values.ConcatWith(r.value, r.values)));

            var tdata  = est.Fit(data).Transform(data);
            var schema = tdata.AsDynamic.Schema;

            int[] idx = new int[4];
            for (int i = 0; i < idx.Length; ++i)
            {
                Assert.True(schema.TryGetColumnIndex("c" + i, out idx[i]), $"Could not find col c{i}");
            }
            var types = new VectorType[idx.Length];

            int[] expectedLen = new int[] { 1, 2, 5, 9 };
            for (int i = 0; i < idx.Length; ++i)
            {
                var type = schema.GetColumnType(idx[i]);
                Assert.True(type.VectorSize > 0, $"Col c{i} had unexpected type {type}");
                types[i] = type.AsVector;
                Assert.Equal(expectedLen[i], type.VectorSize);
            }
            Assert.Equal(TextType.Instance, types[0].ItemType);
            Assert.Equal(TextType.Instance, types[1].ItemType);
            Assert.Equal(NumberType.Float, types[2].ItemType);
            Assert.Equal(NumberType.Float, types[3].ItemType);
        }
コード例 #42
0
        public void AveragePerceptronNoCalibration()
        {
            var env        = new ConsoleEnvironment(seed: 0);
            var dataPath   = GetDataPath(TestDatasets.breastCancer.trainFilename);
            var dataSource = new MultiFileSource(dataPath);
            var ctx        = new BinaryClassificationContext(env);

            var reader = TextLoader.CreateReader(env,
                                                 c => (label: c.LoadBool(0), features: c.LoadFloat(1, 9)));

            LinearBinaryPredictor pred = null;

            var loss = new HingeLoss(new HingeLoss.Arguments()
            {
                Margin = 1
            });

            var est = reader.MakeNewEstimator()
                      .Append(r => (r.label, preds: ctx.Trainers.AveragedPerceptron(r.label, r.features, lossFunction: loss,
                                                                                    numIterations: 2, onFit: p => pred = p)));

            var pipe = reader.Append(est);

            Assert.Null(pred);
            var model = pipe.Fit(dataSource);

            Assert.NotNull(pred);
            // 9 input features, so we ought to have 9 weights.
            Assert.Equal(9, pred.Weights2.Count);

            var data = model.Read(dataSource);

            var metrics = ctx.Evaluate(data, r => r.label, r => r.preds);

            // Run a sanity check against a few of the metrics.
            Assert.InRange(metrics.Accuracy, 0, 1);
            Assert.InRange(metrics.Auc, 0, 1);
            Assert.InRange(metrics.Auprc, 0, 1);
        }
コード例 #43
0
        public void ToKey()
        {
            var env      = new ConsoleEnvironment(seed: 0);
            var dataPath = GetDataPath("iris.data");
            var reader   = TextLoader.CreateReader(env,
                                                   c => (label: c.LoadText(4), values: c.LoadFloat(0, 3)),
                                                   separator: ',');
            var dataSource = new MultiFileSource(dataPath);
            var data       = reader.Read(dataSource);

            var est = data.MakeNewEstimator()
                      .Append(r => (labelKey: r.label.ToKey(), valuesKey: r.values.ToKey(onFit: m => { })))
                      .Append(r => (r.labelKey, r.valuesKey, valuesKeyKey: r.valuesKey.ToKey()));

            var tdata  = est.Fit(data).Transform(data);
            var schema = tdata.AsDynamic.Schema;

            Assert.True(schema.TryGetColumnIndex("labelKey", out int labelCol));
            Assert.True(schema.TryGetColumnIndex("valuesKey", out int valuesCol));
            Assert.True(schema.TryGetColumnIndex("valuesKeyKey", out int valuesKeyCol));

            Assert.Equal(3, schema.GetColumnType(labelCol).KeyCount);
            Assert.True(schema.GetColumnType(valuesCol).ItemType.IsKey);
            Assert.True(schema.GetColumnType(valuesKeyCol).ItemType.IsKey);

            var labelKeyType     = schema.GetMetadataTypeOrNull(MetadataUtils.Kinds.KeyValues, labelCol);
            var valuesKeyType    = schema.GetMetadataTypeOrNull(MetadataUtils.Kinds.KeyValues, valuesCol);
            var valuesKeyKeyType = schema.GetMetadataTypeOrNull(MetadataUtils.Kinds.KeyValues, valuesKeyCol);

            Assert.NotNull(labelKeyType);
            Assert.NotNull(valuesKeyType);
            Assert.NotNull(valuesKeyKeyType);
            Assert.True(labelKeyType.IsVector && labelKeyType.ItemType == TextType.Instance);
            Assert.True(valuesKeyType.IsVector && valuesKeyType.ItemType == NumberType.Float);
            Assert.True(valuesKeyKeyType.IsVector && valuesKeyKeyType.ItemType == NumberType.Float);
            // Because they're over exactly the same data, they ought to have the same cardinality and everything.
            Assert.True(valuesKeyKeyType.Equals(valuesKeyType));
        }
コード例 #44
0
        [ConditionalFact(typeof(Environment), nameof(Environment.Is64BitProcess))] // x86 output differs from Baseline
        public void OnnxModelScenario()
        {
            if (!RuntimeInformation.IsOSPlatform(OSPlatform.Windows))
            {
                return;
            }

            var modelFile = "squeezenet/00000001/model.onnx";

            using (var env = new ConsoleEnvironment(seed: 1, conc: 1))
            {
                var samplevector = GetSampleArrayData();

                var dataView = ComponentCreation.CreateDataView(Env,
                                                                new TestData[] {
                    new TestData()
                    {
                        data_0 = samplevector
                    }
                });

                var onnx = OnnxTransform.Create(env, dataView, modelFile,
                                                new[] { "data_0" },
                                                new[] { "softmaxout_1" });

                onnx.Schema.TryGetColumnIndex("softmaxout_1", out int scores);
                using (var curs = onnx.GetRowCursor(col => col == scores))
                {
                    var getScores = curs.GetGetter <VBuffer <float> >(scores);
                    var buffer    = default(VBuffer <float>);
                    while (curs.MoveNext())
                    {
                        getScores(ref buffer);
                        Assert.Equal(1000, buffer.Length);
                    }
                }
            }
        }
コード例 #45
0
        private void GenericDenseDataView <T>(T[] v1, T[] v2)
        {
            var inputs = new[] {
                new DenseExample <T>()
                {
                    X = v1
                },
                new DenseExample <T>()
                {
                    X = v2
                }
            };

            using (var host = new ConsoleEnvironment())
            {
                var data  = host.CreateStreamingDataView(inputs);
                var value = new VBuffer <T>();
                int n     = 0;
                using (var cur = data.GetRowCursor(i => true))
                {
                    var getter = cur.GetGetter <VBuffer <T> >(0);
                    while (cur.MoveNext())
                    {
                        getter(ref value);
                        Assert.True(value.GetValues().Length == 3);
                        ++n;
                    }
                }
                Assert.True(n == 2);
                var iter = data.AsEnumerable <DenseExample <T> >(host, false).GetEnumerator();
                n = 0;
                while (iter.MoveNext())
                {
                    ++n;
                }
                Assert.True(n == 2);
            }
        }
コード例 #46
0
        public void TestEstimatorSaveLoad()
        {
            using (var env = new ConsoleEnvironment())
            {
                var dataFile    = GetDataPath("images/images.tsv");
                var imageFolder = Path.GetDirectoryName(dataFile);
                var data        = TextLoader.Create(env, new TextLoader.Arguments()
                {
                    Column = new[]
                    {
                        new TextLoader.Column("ImagePath", DataKind.TX, 0),
                        new TextLoader.Column("Name", DataKind.TX, 1),
                    }
                }, new MultiFileSource(dataFile));

                var pipe = new ImageLoaderEstimator(env, imageFolder, ("ImagePath", "ImageReal"))
                           .Append(new ImageResizerEstimator(env, "ImageReal", "ImageReal", 100, 100))
                           .Append(new ImagePixelExtractorEstimator(env, "ImageReal", "ImagePixels"))
                           .Append(new ImageGrayscaleEstimator(env, ("ImageReal", "ImageGray")));

                pipe.GetOutputSchema(Core.Data.SchemaShape.Create(data.Schema));
                var model = pipe.Fit(data);

                using (var file = env.CreateTempFile())
                {
                    using (var fs = file.CreateWriteStream())
                        model.SaveTo(env, fs);
                    var model2 = TransformerChain.LoadFrom(env, file.OpenReadStream());

                    var newCols = ((ImageLoaderTransform)model2.First()).Columns;
                    var oldCols = ((ImageLoaderTransform)model.First()).Columns;
                    Assert.True(newCols
                                .Zip(oldCols, (x, y) => x == y)
                                .All(x => x));
                }
            }
            Done();
        }
コード例 #47
0
ファイル: HelpCommand.cs プロジェクト: jcwrequests/btw-gtd
 public void Execute(ConsoleEnvironment env, string[] args)
 {
     if (args.Length > 0)
     {
         IConsoleCommand value;
         if (!env.Commands.TryGetValue(args[0], out value))
         {
             env.Log.Error("Can't find help for '{0}'", args[0]);
             return;
         }
         env.Log.Info(value.Usage ?? "No Help available");
         return;
     }
     env.Log.Info("Available commands");
     foreach (var actionHandler in env.Commands.OrderBy(h => h.Key))
     {
         env.Log.Info("  {0}", actionHandler.Key.ToUpperInvariant());
         if (!string.IsNullOrWhiteSpace(actionHandler.Value.Usage))
         {
             env.Log.Info("    {0}", actionHandler.Value.Usage);
         }
     }
 }
コード例 #48
0
ファイル: ExitCommand.cs プロジェクト: jcwrequests/btw-gtd
 public void Execute(ConsoleEnvironment env, string[] args)
 {
     Environment.Exit(0);
 }