public void LockOpenGLObject(ComputeImage2D image) { List <ComputeMemory> c = new List <ComputeMemory>() { image }; queue.AcquireGLObjects(c, null); }
public void Draw(Action <ComputeBuffer <Vector4>, ComputeCommandQueue> renderer) { GL.Clear(ClearBufferMask.ColorBufferBit | ClearBufferMask.DepthBufferBit); GL.Finish(); _queue.AcquireGLObjects(new[] { _openCl }, null); renderer(_openCl, _queue); _queue.ReleaseGLObjects(new[] { _openCl }, null); _queue.Finish(); GL.BindBuffer(BufferTarget.PixelUnpackBuffer, _pub); GL.BindTexture(TextureTarget.Texture2D, _texture); GL.TexSubImage2D(TextureTarget.Texture2D, 0, 0, 0, _width, _height, PixelFormat.Rgba, PixelType.Float, IntPtr.Zero); GL.Begin(BeginMode.Quads); GL.TexCoord2(0f, 1f); GL.Vertex3(0f, 0f, 0f); GL.TexCoord2(0f, 0f); GL.Vertex3(0f, 1f, 0f); GL.TexCoord2(1f, 0f); GL.Vertex3(1f, 1f, 0f); GL.TexCoord2(1f, 1f); GL.Vertex3(1f, 0f, 0f); GL.End(); }
public void acquireGLObjects(List <ComputeMemory> _memObjs) { _commands.AcquireGLObjects(_memObjs, null); }
// tick: renders one frame public void Tick() { //float t = 21.5f; // initialize timer if (firstFrame) { timer.Reset(); timer.Start(); firstFrame = false; } // handle keys, only when running time set to -1 (infinite) if (runningTime == -1) if (camera.HandleInput()) { // camera moved; restart ClearAccumulator(); } // render if (useGPU) { // add your CPU + OpenCL path here // mind the gpuPlatform parameter! This allows us to specify the platform on our // test system. // note: it is possible that the automated test tool provides you with a different // platform number than required by your hardware. In that case, you can hardcode // the platform during testing (ignoring gpuPlatform); do not forget to put back // gpuPlatform before submitting! GL.Finish(); // clear the screen screen.Clear(0); // do opencl stuff if (GLInterop) { kernel.SetMemoryArgument(0, texBuffer); } else { kernel.SetMemoryArgument(0, buffer); } // execute kernel //long[] workSize = { screen.width, screen.height }; long[] localSize = { 8, 12 }; long [] workSize = { screen.width , screen.height }; if (GLInterop) { List<ComputeMemory> c = new List<ComputeMemory>() { texBuffer }; queue.AcquireGLObjects(c, null); queue.Execute(kernel, null, workSize, localSize, null); queue.Finish(); queue.ReleaseGLObjects(c, null); } else { camera.Update(); gpuCamera = new GPUCamera(camera.pos, camera.p1, camera.p2, camera.p3, camera.up, camera.right, screen.width, screen.height, camera.lensSize); float scale = 1.0f / (float)++spp; kernel.SetValueArgument(2, gpuCamera); kernel.SetValueArgument(3, scale); queue.Execute(kernel, null, workSize, localSize, null); queue.Finish(); // fetch results if (!GLInterop) { queue.ReadFromBuffer(buffer, ref data, true, null); // visualize result for (int y = 0; y < screen.height; y++) for (int x = 0; x < screen.width; x++) { int temp = x + y * screen.width; screen.pixels[temp] = data[temp]; } } } } else { // this is your CPU only path float scale = 1.0f / (float)++spp; Parallel.For(0, dataArray.Length, parallelOptions, (id) => { for (int j = dataArray[id].y1; j < dataArray[id].y2 && j < screen.height; j++) { for (int i = dataArray[id].x1; i < dataArray[id].x2 && i < screen.width; i++) { // generate primary ray Ray ray = camera.Generate(RTTools.GetRNG(), i, j); // trace path int pixelIdx = i + j * screen.width; accumulator[pixelIdx] += Sample(ray, 0); // plot final color screen.pixels[pixelIdx] = RTTools.Vector3ToIntegerRGB(scale * accumulator[pixelIdx]); } } }); } // stop and report when max render time elapsed int elapsedSeconds = (int)(timer.ElapsedMilliseconds / 1000); if (runningTime != -1) if (elapsedSeconds >= runningTime) { OpenTKApp.Report((int)timer.ElapsedMilliseconds, spp, screen); } }