public static void Main() { modshogun.init_shogun_with_defaults(); double width = 2.1; double epsilon = 1e-5; double C = 1.0; int mkl_norm = 2; double[,] traindata_real = Load.load_numbers("../data/fm_train_real.dat"); double[,] testdata_real = Load.load_numbers("../data/fm_test_real.dat"); double[] trainlab = Load.load_labels("../data/label_train_multiclass.dat"); CombinedKernel kernel = new CombinedKernel(); CombinedFeatures feats_train = new CombinedFeatures(); CombinedFeatures feats_test = new CombinedFeatures(); RealFeatures subkfeats1_train = new RealFeatures(traindata_real); RealFeatures subkfeats1_test = new RealFeatures(testdata_real); GaussianKernel subkernel = new GaussianKernel(10, width); feats_train.append_feature_obj(subkfeats1_train); feats_test.append_feature_obj(subkfeats1_test); kernel.append_kernel(subkernel); RealFeatures subkfeats2_train = new RealFeatures(traindata_real); RealFeatures subkfeats2_test = new RealFeatures(testdata_real); LinearKernel subkernel2 = new LinearKernel(); feats_train.append_feature_obj(subkfeats2_train); feats_test.append_feature_obj(subkfeats2_test); kernel.append_kernel(subkernel2); RealFeatures subkfeats3_train = new RealFeatures(traindata_real); RealFeatures subkfeats3_test = new RealFeatures(testdata_real); PolyKernel subkernel3 = new PolyKernel(10, 2); feats_train.append_feature_obj(subkfeats3_train); feats_test.append_feature_obj(subkfeats3_test); kernel.append_kernel(subkernel3); kernel.init(feats_train, feats_train); MulticlassLabels labels = new MulticlassLabels(trainlab); MKLMulticlass mkl = new MKLMulticlass(C, kernel, labels); mkl.set_epsilon(epsilon); mkl.set_mkl_epsilon(epsilon); mkl.set_mkl_norm(mkl_norm); mkl.train(); kernel.init(feats_train, feats_test); double[] outMatrix = LabelsFactory.to_multiclass(mkl.apply()).get_labels(); }
public static void Main() { modshogun.init_shogun_with_defaults(); double width = 2.1; double epsilon = 1e-5; double C = 1.0; int mkl_norm = 2; double[,] traindata_real = Load.load_numbers("../data/fm_train_real.dat"); double[,] testdata_real = Load.load_numbers("../data/fm_test_real.dat"); double[] trainlab = Load.load_labels("../data/label_train_twoclass.dat"); RealFeatures tfeats = new RealFeatures(traindata_real); PolyKernel tkernel = new PolyKernel(10, 3); tkernel.init(tfeats, tfeats); double[,] K_train = tkernel.get_kernel_matrix(); RealFeatures pfeats = new RealFeatures(testdata_real); tkernel.init(tfeats, pfeats); double[,] K_test = tkernel.get_kernel_matrix(); CombinedFeatures feats_train = new CombinedFeatures(); feats_train.append_feature_obj(new RealFeatures(traindata_real)); CombinedKernel kernel = new CombinedKernel(); kernel.append_kernel(new CustomKernel(K_train)); kernel.append_kernel(new PolyKernel(10, 2)); kernel.init(feats_train, feats_train); BinaryLabels labels = new BinaryLabels(trainlab); MKLClassification mkl = new MKLClassification(); mkl.set_mkl_norm(1); mkl.set_kernel(kernel); mkl.set_labels(labels); mkl.train(); CombinedFeatures feats_pred = new CombinedFeatures(); feats_pred.append_feature_obj(new RealFeatures(testdata_real)); CombinedKernel kernel2 = new CombinedKernel(); kernel2.append_kernel(new CustomKernel(K_test)); kernel2.append_kernel(new PolyKernel(10, 2)); kernel2.init(feats_train, feats_pred); mkl.set_kernel(kernel2); mkl.apply(); modshogun.exit_shogun(); }
public static void Main() { modshogun.init_shogun_with_defaults(); double width = 2.1; double epsilon = 1e-5; double C = 1.0; int mkl_norm = 2; double[,] traindata_real = Load.load_numbers("../data/fm_train_real.dat"); double[,] testdata_real = Load.load_numbers("../data/fm_test_real.dat"); double[] trainlab = Load.load_labels("../data/label_train_multiclass.dat"); CombinedKernel kernel = new CombinedKernel(); CombinedFeatures feats_train = new CombinedFeatures(); CombinedFeatures feats_test = new CombinedFeatures(); RealFeatures subkfeats1_train = new RealFeatures(traindata_real); RealFeatures subkfeats1_test = new RealFeatures(testdata_real); GaussianKernel subkernel = new GaussianKernel(10, width); feats_train.append_feature_obj(subkfeats1_train); feats_test.append_feature_obj(subkfeats1_test); kernel.append_kernel(subkernel); RealFeatures subkfeats2_train = new RealFeatures(traindata_real); RealFeatures subkfeats2_test = new RealFeatures(testdata_real); LinearKernel subkernel2 = new LinearKernel(); feats_train.append_feature_obj(subkfeats2_train); feats_test.append_feature_obj(subkfeats2_test); kernel.append_kernel(subkernel2); RealFeatures subkfeats3_train = new RealFeatures(traindata_real); RealFeatures subkfeats3_test = new RealFeatures(testdata_real); PolyKernel subkernel3 = new PolyKernel(10, 2); feats_train.append_feature_obj(subkfeats3_train); feats_test.append_feature_obj(subkfeats3_test); kernel.append_kernel(subkernel3); kernel.init(feats_train, feats_train); MulticlassLabels labels = new MulticlassLabels(trainlab); MKLMulticlass mkl = new MKLMulticlass(C, kernel, labels); mkl.set_epsilon(epsilon); mkl.set_mkl_epsilon(epsilon); mkl.set_mkl_norm(mkl_norm); mkl.train(); kernel.init(feats_train, feats_test); double[] outMatrix = MulticlassLabels.obtain_from_generic(mkl.apply()).get_labels(); modshogun.exit_shogun(); }
static void Main(string[] argv) { modshogun.init_shogun_with_defaults(); double width = 2.1; double epsilon = 1e-5; double C = 1.0; DoubleMatrix traindata_real = Load.load_numbers("../data/fm_train_real.dat"); DoubleMatrix testdata_real = Load.load_numbers("../data/fm_test_real.dat"); DoubleMatrix trainlab = Load.load_labels("../data/label_train_twoclass.dat"); CombinedKernel kernel = new CombinedKernel(); CombinedFeatures feats_train = new CombinedFeatures(); RealFeatures tfeats = new RealFeatures(traindata_real); PolyKernel tkernel = new PolyKernel(10,3); tkernel.init(tfeats, tfeats); DoubleMatrix K = tkernel.get_kernel_matrix(); kernel.append_kernel(new CustomKernel(K)); RealFeatures subkfeats_train = new RealFeatures(traindata_real); feats_train.append_feature_obj(subkfeats_train); PolyKernel subkernel = new PolyKernel(10,2); kernel.append_kernel(subkernel); kernel.init(feats_train, feats_train); Labels labels = new Labels(trainlab); LibSVM svm = new LibSVM(C, kernel, labels); svm.train(); CombinedKernel kernel_pred = new CombinedKernel(); CombinedFeatures feats_pred = new CombinedFeatures(); RealFeatures pfeats = new RealFeatures(testdata_real); PolyKernel tkernel_pred = new PolyKernel(10,3); tkernel_pred.init(tfeats, pfeats); DoubleMatrix KK = tkernel.get_kernel_matrix(); kernel_pred.append_kernel(new CustomKernel(KK)); RealFeatures subkfeats_test = new RealFeatures(testdata_real); feats_pred.append_feature_obj(subkfeats_train); PolyKernel subkernel_pred = new PolyKernel(10,2); kernel_pred.append_kernel(subkernel_pred); kernel_pred.init(feats_train, feats_pred); svm.set_kernel(kernel_pred); svm.apply(); DoubleMatrix km_train =kernel.get_kernel_matrix(); Console.WriteLine(km_train.ToString()); modshogun.exit_shogun(); }
static void Main(string[] argv) { modshogun.init_shogun_with_defaults(); double width = 2.1; double epsilon = 1e-5; double C = 1.0; int mkl_norm = 2; DoubleMatrix traindata_real = Load.load_numbers("../data/fm_train_real.dat"); DoubleMatrix testdata_real = Load.load_numbers("../data/fm_test_real.dat"); DoubleMatrix trainlab = Load.load_labels("../data/label_train_twoclass.dat"); RealFeatures tfeats = new RealFeatures(traindata_real); PolyKernel tkernel = new PolyKernel(10,3); tkernel.init(tfeats, tfeats); DoubleMatrix K_train = tkernel.get_kernel_matrix(); RealFeatures pfeats = new RealFeatures(testdata_real); tkernel.init(tfeats, pfeats); DoubleMatrix K_test = tkernel.get_kernel_matrix(); CombinedFeatures feats_train = new CombinedFeatures(); feats_train.append_feature_obj(new RealFeatures(traindata_real)); CombinedKernel kernel = new CombinedKernel(); kernel.append_kernel(new CustomKernel(K_train)); kernel.append_kernel(new PolyKernel(10,2)); kernel.init(feats_train, feats_train); Labels labels = new Labels(trainlab); MKLClassification mkl = new MKLClassification(); mkl.set_mkl_norm(1); mkl.set_kernel(kernel); mkl.set_labels(labels); mkl.train(); CombinedFeatures feats_pred = new CombinedFeatures(); feats_pred.append_feature_obj(new RealFeatures(testdata_real)); CombinedKernel kernel2 = new CombinedKernel(); kernel2.append_kernel(new CustomKernel(K_test)); kernel2.append_kernel(new PolyKernel(10, 2)); kernel2.init(feats_train, feats_pred); mkl.set_kernel(kernel2); mkl.apply(); modshogun.exit_shogun(); }
public static void Main() { modshogun.init_shogun_with_defaults(); int cardinality = 2; int cache = 10; double[,] traindata_real = Load.load_numbers("../data/fm_train_real.dat"); double[,] testdata_real = Load.load_numbers("../data/fm_test_real.dat"); String[] fm_train_dna = Load.load_dna("../data/fm_train_dna.dat"); String[] fm_test_dna = Load.load_dna("../data/fm_test_dna.dat"); RealFeatures subfeats_train = new RealFeatures(traindata_real); RealFeatures subfeats_test = new RealFeatures(testdata_real); CombinedKernel kernel = new CombinedKernel(); CombinedFeatures feats_train = new CombinedFeatures(); CombinedFeatures feats_test = new CombinedFeatures(); GaussianKernel subkernel = new GaussianKernel(cache, 1.1); feats_train.append_feature_obj(subfeats_train); feats_test.append_feature_obj(subfeats_test); kernel.append_kernel(subkernel); StringCharFeatures subkfeats_train = new StringCharFeatures(fm_train_dna, EAlphabet.DNA); StringCharFeatures subkfeats_test = new StringCharFeatures(fm_test_dna, EAlphabet.DNA); int degree = 3; FixedDegreeStringKernel subkernel2 = new FixedDegreeStringKernel(10, degree); feats_train.append_feature_obj(subkfeats_train); feats_test.append_feature_obj(subkfeats_test); kernel.append_kernel(subkernel2); subkfeats_train = new StringCharFeatures(fm_train_dna, EAlphabet.DNA); subkfeats_test = new StringCharFeatures(fm_test_dna, EAlphabet.DNA); LocalAlignmentStringKernel subkernel3 = new LocalAlignmentStringKernel(10); feats_train.append_feature_obj(subkfeats_train); feats_test.append_feature_obj(subkfeats_test); kernel.append_kernel(subkernel3); kernel.init(feats_train, feats_train); double[,] km_train = kernel.get_kernel_matrix(); kernel.init(feats_train, feats_test); double[,] km_test = kernel.get_kernel_matrix(); modshogun.exit_shogun(); }
public virtual object run(IList para) { modshogun.init_shogun_with_defaults(); int cardinality = (int)((int?)para[0]); int size_cache = (int)((int?)para[1]); DoubleMatrix traindata_real = Load.load_numbers("../data/fm_train_real.dat"); DoubleMatrix testdata_real = Load.load_numbers("../data/fm_test_real.dat"); string[] fm_train_dna = Load.load_dna("../data/fm_train_dna.dat"); string[] fm_test_dna = Load.load_dna("../data/fm_test_dna.dat"); RealFeatures subfeats_train = new RealFeatures(traindata_real); RealFeatures subfeats_test = new RealFeatures(testdata_real); CombinedKernel kernel = new CombinedKernel(); CombinedFeatures feats_train = new CombinedFeatures(); CombinedFeatures feats_test = new CombinedFeatures(); GaussianKernel subkernel = new GaussianKernel(10, 1.1); feats_train.append_feature_obj(subfeats_train); feats_test.append_feature_obj(subfeats_test); kernel.append_kernel(subkernel); StringCharFeatures subkfeats_train = new StringCharFeatures(fm_train_dna, DNA); StringCharFeatures subkfeats_test = new StringCharFeatures(fm_test_dna, DNA); int degree = 3; FixedDegreeStringKernel subkernel2 = new FixedDegreeStringKernel(10, degree); feats_train.append_feature_obj(subkfeats_train); feats_test.append_feature_obj(subkfeats_test); kernel.append_kernel(subkernel2); subkfeats_train = new StringCharFeatures(fm_train_dna, DNA); subkfeats_test = new StringCharFeatures(fm_test_dna, DNA); LocalAlignmentStringKernel subkernel3 = new LocalAlignmentStringKernel(10); feats_train.append_feature_obj(subkfeats_train); feats_test.append_feature_obj(subkfeats_test); kernel.append_kernel(subkernel3); kernel.init(feats_train, feats_train); DoubleMatrix km_train =kernel.get_kernel_matrix(); kernel.init(feats_train, feats_test); DoubleMatrix km_test =kernel.get_kernel_matrix(); ArrayList result = new ArrayList(); result.Add(km_train); result.Add(km_test); result.Add(kernel); modshogun.exit_shogun(); return (object)result; }
static void Main(string[] argv) { modshogun.init_shogun_with_defaults(); double width = 2.1; double epsilon = 1e-5; double C = 1.0; int mkl_norm = 2; DoubleMatrix traindata_real = Load.load_numbers("../data/fm_train_real.dat"); DoubleMatrix testdata_real = Load.load_numbers("../data/fm_test_real.dat"); DoubleMatrix trainlab = Load.load_labels("../data/label_train_twoclass.dat"); CombinedKernel kernel = new CombinedKernel(); CombinedFeatures feats_train = new CombinedFeatures(); CombinedFeatures feats_test = new CombinedFeatures(); RealFeatures subkfeats_train = new RealFeatures(traindata_real); RealFeatures subkfeats_test = new RealFeatures(testdata_real); GaussianKernel subkernel = new GaussianKernel(10, width); feats_train.append_feature_obj(subkfeats_train); feats_test.append_feature_obj(subkfeats_test); kernel.append_kernel(subkernel); LinearKernel subkernel2 = new LinearKernel(); feats_train.append_feature_obj(subkfeats_train); feats_test.append_feature_obj(subkfeats_test); kernel.append_kernel(subkernel2); PolyKernel subkernel3 = new PolyKernel(10, 2); feats_train.append_feature_obj(subkfeats_train); feats_test.append_feature_obj(subkfeats_test); kernel.append_kernel(subkernel3); kernel.init(feats_train, feats_train); Labels labels = new Labels(trainlab); MKLMultiClass mkl = new MKLMultiClass(C, kernel, labels); mkl.set_epsilon(epsilon); mkl.set_mkl_epsilon(epsilon); mkl.set_mkl_norm(mkl_norm); mkl.train(); kernel.init(feats_train, feats_test); DoubleMatrix @out = mkl.apply().get_labels(); modshogun.exit_shogun(); }
public static void Main() { modshogun.init_shogun_with_defaults(); int cardinality = 2; int cache = 10; double[,] traindata_real = Load.load_numbers("../data/fm_train_real.dat"); double[,] testdata_real = Load.load_numbers("../data/fm_test_real.dat"); String[] fm_train_dna = Load.load_dna("../data/fm_train_dna.dat"); String[] fm_test_dna = Load.load_dna("../data/fm_test_dna.dat"); RealFeatures subfeats_train = new RealFeatures(traindata_real); RealFeatures subfeats_test = new RealFeatures(testdata_real); CombinedKernel kernel= new CombinedKernel(); CombinedFeatures feats_train = new CombinedFeatures(); CombinedFeatures feats_test = new CombinedFeatures(); GaussianKernel subkernel = new GaussianKernel(cache, 1.1); feats_train.append_feature_obj(subfeats_train); feats_test.append_feature_obj(subfeats_test); kernel.append_kernel(subkernel); StringCharFeatures subkfeats_train = new StringCharFeatures(fm_train_dna, EAlphabet.DNA); StringCharFeatures subkfeats_test = new StringCharFeatures(fm_test_dna, EAlphabet.DNA); int degree = 3; FixedDegreeStringKernel subkernel2= new FixedDegreeStringKernel(10, degree); feats_train.append_feature_obj(subkfeats_train); feats_test.append_feature_obj(subkfeats_test); kernel.append_kernel(subkernel2); subkfeats_train = new StringCharFeatures(fm_train_dna, EAlphabet.DNA); subkfeats_test = new StringCharFeatures(fm_test_dna, EAlphabet.DNA); LocalAlignmentStringKernel subkernel3 = new LocalAlignmentStringKernel(10); feats_train.append_feature_obj(subkfeats_train); feats_test.append_feature_obj(subkfeats_test); kernel.append_kernel(subkernel3); kernel.init(feats_train, feats_train); double[,] km_train=kernel.get_kernel_matrix(); kernel.init(feats_train, feats_test); double[,] km_test=kernel.get_kernel_matrix(); modshogun.exit_shogun(); }