コード例 #1
0
        private ColumnVector EulerMEthode2(Grid grid, ColumnVector volterra, ColumnVector Z_Brownian)//Not Used !!
        {
            int Nbstep = 20;
            Func <double, double> epsilon = t => Math.Pow(0.235, 2);

            var VIXFutures = new ColumnVector(grid.get_timeNmbrStep() / 50);


            for (int k = 1; k <= volterra.Count() / 50; k++)
            {
                int  N_k        = k * 50;
                Grid secondGrid = new Grid(grid.t(N_k), grid.t(N_k) + Delta, Nbstep);
                //3- approximate the continuous-time process V^T by the discrete-time version V^T~ defined via the  forward Euler scheme
                int N_tau = secondGrid.get_timeNmbrStep();
                // Volterra  V^T
                double[] volterraT = new double[N_tau + 1];

                volterraT[0] = volterra[N_k - 1];

                for (int j = 1; j <= N_tau; j++)
                {
                    double   v  = 0.0;
                    double[] v2 = new double[volterra.Count() / 50];
                    for (int i = 1; i <= N_k; i++)
                    {
                        v += (Z_Brownian[i] - Z_Brownian[i - 1]) / Math.Pow((secondGrid.t(j) - grid.t(i - 1)), -H + 0.5);
                    }
                    volterraT[j] = (v);
                }

                double VIX_future_i = VIX_Calculate(epsilon, secondGrid, volterraT);
                VIXFutures[k - 1] += VIX_future_i;
            }
            return(VIXFutures);
        }
コード例 #2
0
        public Plot(ColumnVector x_i, ColumnVector y_i, ColumnVector y_i2, string title, string xName, string yName, string curveName)
        {
            InitializeComponent();

            GraphPane myPane = zedGraphControl1.GraphPane;

            myPane.Title.Text       = title;
            myPane.XAxis.Title.Text = xName;
            myPane.YAxis.Title.Text = yName;

            PointPairList VIX_fut_Prices_LogN  = new PointPairList();
            PointPairList VIX_fut_Prices_LogN2 = new PointPairList();

            for (int i = 0; i < x_i.Count(); i++)
            {
                VIX_fut_Prices_LogN.Add(x_i[i], y_i[i]);
                VIX_fut_Prices_LogN2.Add(x_i[i], y_i2[i]);
                //VIX_fut_Prices_TrCholesky.Add(x_i[i], model.TruncatedCholeskyBergomi(x_i[i], epsilon_0));
            }

            LineItem teamACurve = myPane.AddCurve(curveName,
                                                  VIX_fut_Prices_LogN, Color.Red, SymbolType.None);
            LineItem teamACurve2 = myPane.AddCurve(curveName,
                                                   VIX_fut_Prices_LogN2, Color.Blue, SymbolType.None);

            zedGraphControl1.AxisChange();
        }
コード例 #3
0
        public Plot(ColumnVector x_i, ColumnVector y_i, string title, string xName, string yName, string curveName)
        {
            InitializeComponent();

            GraphPane myPane = zedGraphControl1.GraphPane;

            myPane.Title.Text       = title;
            myPane.XAxis.Title.Text = xName;
            myPane.YAxis.Title.Text = yName;

            PointPairList VIX_fut_Prices_LogN = new PointPairList();

            rBergomiVIXfuture     model     = new rBergomiVIXfuture();
            Func <double, double> epsilon_0 = t => Math.Pow(0.235, 2);// *Math.Pow(1 + t, 0.5);

            for (int i = 0; i < x_i.Count(); i++)
            {
                VIX_fut_Prices_LogN.Add(x_i[i], y_i[i]);
                //VIX_fut_Prices_TrCholesky.Add(x_i[i], model.TruncatedCholeskyBergomi(x_i[i], epsilon_0));
            }

            LineItem teamACurve = myPane.AddCurve(curveName,
                                                  VIX_fut_Prices_LogN, Color.Red, SymbolType.None);


            zedGraphControl1.AxisChange();
        }
コード例 #4
0
        public Plot(ColumnVector x_i, ColumnVector y_i, ColumnVector y_i2, ColumnVector y_i3)
        {
            InitializeComponent();

            GraphPane myPane = zedGraphControl1.GraphPane;

            myPane.Title.Text       = "VIX Futures";
            myPane.XAxis.Title.Text = "T";
            myPane.YAxis.Title.Text = "VIX futures";

            PointPairList VIX_fut_Prices_LogN  = new PointPairList();
            PointPairList VIX_fut_Prices_LogN2 = new PointPairList();
            PointPairList VIX_fut_Prices_LogN3 = new PointPairList();

            for (int i = 0; i < x_i.Count(); i++)
            {
                VIX_fut_Prices_LogN.Add(x_i[i], y_i[i]);
                VIX_fut_Prices_LogN2.Add(x_i[i], y_i2[i]);
                VIX_fut_Prices_LogN3.Add(x_i[i], y_i3[i]);
                //VIX_fut_Prices_TrCholesky.Add(x_i[i], model.TruncatedCholeskyBergomi(x_i[i], epsilon_0));
            }

            LineItem teamACurve = myPane.AddCurve("Log Normal",
                                                  VIX_fut_Prices_LogN, Color.Red, SymbolType.None);

            LineItem teamACurve2 = myPane.AddCurve("Hybrid + Euler",
                                                   VIX_fut_Prices_LogN2, Color.Blue, SymbolType.None);

            LineItem teamACurve3 = myPane.AddCurve("Truncated Cholesky",
                                                   VIX_fut_Prices_LogN3, Color.Green, SymbolType.None);

            zedGraphControl1.AxisChange();
        }
コード例 #5
0
        static void Main(string[] args)
        {
            //Ploting results Graph
            //Application.EnableVisualStyles();
            //Application.SetCompatibleTextRenderingDefault(false);
            //Application.Run(new Graph());


            rBergomiVIXfuture     model     = new rBergomiVIXfuture();
            Func <double, double> epsilon_0 = t => Math.Pow(0.235, 2);// *Math.Sqrt(1 + t);
            double T = 2.0;
            //// the Gri t_0 ..... t_{100} = T
            int  n    = 500;
            Grid grid = new Grid(0, T, (int)Math.Abs(T * n));

            //lognormal
            double vixfuture_LogNormal = model.VIXfuture_LogNormal(grid.t(35), epsilon_0);
            // //Mc with hybrid Scheme
            ColumnVector vixfuture_Hybrid = model.VIXfuture_HybridMethod(T, epsilon_0);
            ColumnVector newvixfutures    = new ColumnVector(vixfuture_Hybrid.Count());
            ColumnVector newvixlognorm    = new ColumnVector(vixfuture_Hybrid.Count());
            ColumnVector newvixtruncated  = new ColumnVector(vixfuture_Hybrid.Count());

            ColumnVector ti      = new ColumnVector(vixfuture_Hybrid.Count());
            int          perdiod = 100;

            for (int i = 0; i < vixfuture_Hybrid.Count(); i++)
            {
                int N_i = (i + 1) * perdiod;
                ti[i]              = grid.t((N_i));
                newvixfutures[i]   = vixfuture_Hybrid[i];
                newvixtruncated[i] = model.VIXfuture_TruncatedChlsky(ti[i], epsilon_0);
                newvixlognorm[i]   = model.VIXfuture_LogNormal(ti[i], epsilon_0);
            }
            Application.Run(new Plot(ti, newvixlognorm, newvixfutures, newvixtruncated));
            //Application.Run(new Plot(ti, newvixfutures,newvixlognorm, "Volterra Simulation in hybrid Method", "T + Delta ", "V", "volterra process"));
            //Application.Run(new Plot(ti, newvixlognorm, "Volterra Simulation in hybrid Method", "T + Delta ", "V", "volterra process"));

            // //Mc with trancated Cholesky
            double TrancatedMethode_MCstdDeviation;
            double vixfuture_trancated = model.VIXfuture_TruncatedChlsky(T, epsilon_0, out TrancatedMethode_MCstdDeviation);

            //S&P Option Pricing
            VIXOption option      = new VIXOption(VIXOption.OptionType.Call, 1.0, 100);
            double    optionPrice = model.PriceVIXOption(option, epsilon_0, 100);
        } //Main
コード例 #6
0
        public void simulateFFT(out ColumnVector Z, out ColumnVector volterra)
        {
            int n_T = grid.get_timeNmbrStep();

            //Z_i defined in A.1
            Z = new ColumnVector(n_T);
            RectangularMatrix Z_k = new RectangularMatrix(2, n_T);

            volterra = new ColumnVector(n_T);

            //DateTime starttestM = DateTime.Now;
            //for (int zz = 1; zz <= 1.0E4; zz++)
            //{
            //    SimulateCorrelated(Z, Z_k);
            //}
            //TimeSpan timeExecutiontestM = DateTime.Now - starttestM;

            SimulateCorrelated(Z, Z_k);//Simulate 3 Correlated Gaussians Z_i; Z_k_{1,i}; Z_k_{2,i}  i:= 0, ..., n_T



            //Gamma for Convolution
            double[] Zdouble = Z.ToArray();
            double[] convolution;
            DateTime starttest = DateTime.Now;

            //for (int zz = 1; zz <= 1.0E4; zz++)
            //    alglib.convr1d(Gamma.ToArray(), n_T, Z.ToArray(), n_T, out convolution2);
            //TimeSpan timeExecutiontest = DateTime.Now - starttest;
            alglib.convr1d(Gamma.ToArray(), n_T, Z.ToArray(), n_T, out convolution);

            //DateTime starttestM = DateTime.Now;
            //for (int zz = 1; zz <= 1.0E5; zz++)
            //{

            //}
            //TimeSpan timeExecutiontestM = DateTime.Now - starttestM;

            //var convolutionM = new Double1DConvolution(Z, Gamma.Count());
            //DoubleVector convolution = convolutionM.Convolve(Gamma);

            for (int i = 1; i <= volterra.Count(); i++)
            {
                double v = convolution[i - 1];
                for (int k = 1; k < Math.Min(i, kappa); k++)
                {
                    v += Z_k[k - 1, i - k];
                }
                volterra[i - 1] = v;
            }
        }
コード例 #7
0
        public ColumnVector VIXfuture_HybridMethod(double T, Func <double, double> epsilon)
        {
            //Result
            ColumnVector VIXFutures;
            //For Exécution Time
            DateTime start = DateTime.Now;
            //Input:
            int kappa = 2;

            // the Gri t_0 ..... t_{100} = T
            int  n    = 500;
            Grid grid = new Grid(0, T, (int)Math.Abs(T * n));

            int n_T = grid.get_timeNmbrStep();

            n_tH = Math.Pow(n_T, H - 0.5); //optimizeMC

            //The second Grid  t_0=T, t_1 ..... t_N = T + Delta
            int Nbstep = 20;

            //Correlation :
            SymmetricMatrix correl         = MakeCorrel(n, grid);
            SquareMatrix    choleskyCorrel = correl.CholeskyDecomposition().SquareRootMatrix();

            int period = 100;

            VIXFutures = new ColumnVector(grid.get_timeNmbrStep() / period);


            //--------------------------------------------------------------------------------------------------------------------------------------------------------------
            //-----------------------------------MC----------------------------------------------------------------------------------------------------------------------
            //-----------------------------------------------------------------------------------------------------------------------------------------------------------
            var          MCnbofSimulation = 3.0E4;
            HybridScheme hybridscheme     = new HybridScheme(choleskyCorrel, grid, kappa, H);

            for (int mc = 1; mc <= MCnbofSimulation; mc++)
            {
                // 1-simulation of volterra Hybrid Scheme
                ColumnVector Z;
                ColumnVector volterra;
                ColumnVector Z_Brownian;

                hybridscheme.simulateFFT(out Z, out volterra);

                //2 - extract the path of the Brownian motion Z driving the Volterra process
                Z_Brownian = ExtractBrownian(kappa, n_T, Z, volterra);

                //Grid secondGrid2 = new Grid(grid.t(n_T), grid.t(n_T) + Delta, 20);
                //ColumnVector volterraT2 = EulerMEthode(grid, secondGrid2, n_T, volterra, Z_Brownian);
                //double VIX_future_i2 = VIX_Calculate(epsilon, secondGrid2, volterraT2);
                //VIXFutures[0] += VIX_future_i2;


                //DateTime starttestM = DateTime.Now;
                //for (int zz = 1; zz <= 1.0E4; zz++)
                //{
                //    hybridscheme.simulateFFT(out Z, out volterra);
                //}
                //TimeSpan timeExecutiontestM = DateTime.Now - starttestM;

                //DateTime starttest = DateTime.Now;
                //for (int zz = 1; zz <= 1.0E4; zz++)
                //{
                //    for (int i = 1; i <= volterra.Count() / period; i++)
                //    {
                //        int N_i2 = i * period;

                //        //3- approximate the continuous-time process V^T by the discrete-time version V^T~ defined via the  forward Euler scheme
                //        double[] volterraT2 = EulerMEthode(grid, secondGrid, N_i2, volterra, Z_Brownian);
                //        //double VIX_future_i2 = VIX_Calculate(epsilon, secondGrid, volterraT2);
                //        //VIXFutures[i - 1] += VIX_future_i2;
                //    }
                //}
                //TimeSpan timeExecutiontest = DateTime.Now - starttest;

                for (int i = 1; i <= volterra.Count() / period; i++)
                {
                    int  N_i        = i * period;
                    Grid secondGrid = new Grid(grid.t(N_i), grid.t(N_i) + Delta, Nbstep);
                    //3- approximate the continuous-time process V^T by the discrete-time version V^T~ defined via the  forward Euler scheme
                    double[] volterraT    = EulerMEthode(grid, secondGrid, N_i, volterra, Z_Brownian);
                    double   VIX_future_i = VIX_Calculate(epsilon, secondGrid, volterraT);
                    VIXFutures[i - 1] += VIX_future_i;
                }
            }// ENd of MC
            //MC Mean
            for (int i = 0; i < VIXFutures.Count(); i++)
            {
                VIXFutures[i] /= MCnbofSimulation;
            }
            TimeSpan timeExecution = DateTime.Now - start;

            return(VIXFutures);
        }
コード例 #8
0
ファイル: CmaState.cs プロジェクト: sbagnall/CmaEs-IPOP
        /// <summary>
        ///
        /// </summary>
        /// <param name="pop"></param>
        /// <param name="muBest"></param>
        /// <param name="muWorst"></param>
        public void ReEstimate(RectangularMatrix pop, double muBest, double muWorst)
        {
            if (pop.ColumnCount != p.Mu)
            {
                throw new ApplicationException("");
            }

            int n = p.N;

            fitnessHistory[gen % fitnessHistory.Count()] = muBest;             // needed for divergence check

            ColumnVector oldmean = new ColumnVector(mean.Dimension);

            for (int i = 0; i < mean.Dimension; i++)
            {
                oldmean[i] = mean [i];
            }

            double[] BDz = new double[n];             // valarray<double>

            /* calculate xmean and rgBDz~N(0,C) */
            for (int i = 0; i < n; ++i)
            {
                mean[i] = 0.0;

                for (int j = 0; j < pop.ColumnCount; ++j)
                {
                    mean[i] += p.Weights[j] * (pop.Column(j))[i];
                }

                BDz[i] = Math.Sqrt(p.MuEff) * (mean[i] - oldmean[i]) / sigma;
            }

            ColumnVector tmp = new ColumnVector(n);             // [vector<double>]

            /* calculate z := D^(-1) * B^(-1) * rgBDz into rgdTmp */
            for (int i = 0; i < n; ++i)
            {
                double sum = 0.0;

                for (int j = 0; j < n; ++j)
                {
                    sum += B[j, i] * BDz[j];
                }

                tmp[i] = sum / d[i];
            }

            /* cumulation for sigma (ps) using B*z */
            for (int i = 0; i < n; ++i)
            {
                double sum = 0.0;

                for (int j = 0; j < n; ++j)
                {
                    sum += B[i, j] * tmp[j];
                }

                ps[i] = (1.0 - p.CCumSig) * ps[i] + Math.Sqrt(p.CCumSig * (2.0 - p.CCumSig)) * sum;
            }

            /* calculate norm(ps)^2 */
            double psxps = ps.Sum(x => x * x);

            double chiN = Math.Sqrt((double)p.N) * (1.0 - 1.0 / (4.0 * p.N) + 1.0 / (21.0 * p.N * p.N));

            /* cumulation for covariance matrix (pc) using B*D*z~N(0,C) */
            bool   isHsig = Math.Sqrt(psxps) / Math.Sqrt(1.0 - Math.Pow(1.0 - p.CCumSig, 2.0 * gen)) / chiN < 1.5 + 1.0 / (p.N - 0.5);
            double hsig   = (isHsig) ? 1.0 : 0.0;

            //pc = (1.0 - p.ccumcov) * pc + hsig * Math.Sqrt(p.ccumcov * (2.0 - p.ccumcov)) * BDz;
            pc = pc.Select(x => x * (1.0 - p.CCumCov)).Zip(BDz.Select(x => x * Math.Sqrt(p.CCumCov * (2.0 - p.CCumCov)) * hsig), (lhs, rhs) => lhs + rhs).ToArray();

            /* stop initial phase (MK, this was not reachable in the org code, deleted) */
            /* remove momentum in ps, if ps is large and fitness is getting worse */

            if (gen >= fitnessHistory.Count())
            {
                // find direction from muBest and muWorst (muBest == muWorst handled seperately
                double direction = (muBest < muWorst) ? -1.0 : 1.0;

                int now      = gen % fitnessHistory.Count();
                int prev     = (gen - 1) % fitnessHistory.Count();
                int prevprev = (gen - 2) % fitnessHistory.Count();

                bool fitnessWorsens = (muBest == muWorst) ||                 // <- increase norm also when population has converged (this deviates from Hansen's scheme)
                                      ((direction * fitnessHistory[now] < direction * fitnessHistory[prev])
                                       &&
                                       (direction * fitnessHistory[now] < direction * fitnessHistory[prevprev]));

                if (psxps / p.N > 1.5 + 10.0 * Math.Sqrt(2.0 / p.N) && fitnessWorsens)
                {
                    double tfac = Math.Sqrt((1 + Math.Max(0.0, Math.Log(psxps / p.N))) * p.N / psxps);
                    ps     = ps.Select(x => x * tfac).ToArray();
                    psxps *= tfac * tfac;
                }
            }

            /* update of C  */
            /* Adapt_C(t); not used anymore */
            if (p.CCov != 0.0)
            {
                //flgEigensysIsUptodate = 0;

                /* update covariance matrix */
                for (int i = 0; i < n; ++i)
                {
                    for (int j = 0; j <= i; ++j)
                    {
                        C[i, j] =
                            (1 - p.CCov) * C[i, j]
                            +
                            p.CCov * (1.0 / p.MuCov) * pc[i] * pc[j]
                            +
                            (1 - hsig) * p.CCumCov * (2.0 - p.CCumCov) * C[i, j];

                        /*C[i][j] = (1 - p.ccov) * C[i][j]
                         + sp.ccov * (1./sp.mucov)
                         * (rgpc[i] * rgpc[j]
                         + (1-hsig)*sp.ccumcov*(2.-sp.ccumcov) * C[i][j]); */
                        for (int k = 0; k < p.Mu; ++k)
                        {
                            /* additional rank mu update */
                            C[i, j] += p.CCov * (1 - 1.0 / p.MuCov) * p.Weights[k]
                                       * ((pop.Column(k))[i] - oldmean[i])
                                       * ((pop.Column(k))[j] - oldmean[j])
                                       / sigma / sigma;

                            // * (rgrgx[index[k]][i] - rgxold[i])
                            // * (rgrgx[index[k]][j] - rgxold[j])
                            // / sigma / sigma;
                        }
                    }
                }
            }

            /* update of sigma */
            sigma *= Math.Exp(((Math.Sqrt(psxps) / chiN) - 1.0) / p.Damp);
            /* calculate eigensystem, must be done by caller  */
            //cmaes_UpdateEigensystem(0);


            /* treat minimal standard deviations and numeric problems
             * Note that in contrast with the original code, some numerical issues are treated *before* we
             * go into the eigenvalue calculation */

            treatNumericalIssues(muBest, muWorst);

            gen++;             // increase generation
        }