public void TestClassifierCreateViewTypeIsStdAndClassifierTypeIsSmartView() { ClassifierName = ClassifierName + "Sync" + RandomNumber; ClassifierManager.CreateNewClassifier("Standard", "SmartView", "", false); ClassifierManager.SaveClassifier(ClassifierName); ClassifierManager.VerifyClassifierTitleAndStatusBar(ClassifierName, "Standard"); }
public void TestClassifierCreateViewTypeIsMarkReaderAndClassifierTypeIsSmartView() { ClassifierName = ClassifierName + "Sync" + RandomNumber; ClassifierManager.CreateNewClassifier("Mark reader", "non", "", false); ClassifierManager.SaveClassifier(ClassifierName); ClassifierManager.VerifyClassifierTitleAndStatusBar(ClassifierName, "Mark reader"); }
private void AlgoritmAccurancy(weka.core.Instances insts, Classifier classifier, string algoritmName, bool?isNominal = null) { ClassifierManager manager = new ClassifierManager(insts); manager.EliminateTargetAttribute(); if (isNominal == true) { manager.Discreatization(manager.Instance); } else if (isNominal == false) { manager.NominalToBinary(manager.Instance); manager.Normalization(manager.Instance); } manager.Randomize(manager.Instance); TrainModel model = manager.Train(manager.Instance, classifier); SuccessfulAlgorithm.Add(new AlgorithmModel() { SuccessRatio = manager.FindAccurancy(), AlgorithName = algoritmName, TrainModel = model });; }
//MATLAB REFERENCE. You must add the matlab reference via the project menu before this will work //MLApp.MLApp matlab; public AdaptiveProvider(RandomizedQueue <StudyTestPair> stp, IArrayView <string> presentation, IArrayView <string> class1, IArrayView <string> class2, AdaptiveSettings settings, IEEGDataSource dataSource, IArray <ClassificationScheme> classifiers) { this.pres = stp; this.settings = settings; this.dataSource = dataSource; this.presentation = presentation; this.class1 = class1; this.class2 = class2; this.classifiers = classifiers; //NOTE: It will always take the first classification scheme chosen //TODO: Make it so that only one classification scheme can be specified classifier = new ClassifierManager(classifiers[0]); //MATLAB REFERENCE //matlab = new MLApp.MLApp(); blocks = new RandomizedQueue <string> [settings.NumBlocks * 2]; int limit = 0; for (int i = 0; i < settings.NumBlocks * 2; i += 2) { blocks[i] = new RandomizedQueue <string>(); blocks[i + 1] = new RandomizedQueue <string>(); for (int j = 0 + limit * settings.BlockSize; j < (limit + 1) * settings.BlockSize; j++) { blocks[i].Add(this.class1[j]); blocks[i + 1].Add(this.class2[j]); } limit++; } }
private void Btn_Click(object sender, EventArgs e) { bool isValid = true; for (int j = 0; j < staticInsts.instance(0).numValues() - 1; j++) { if (!isValid) { break; } for (int i = 0; i < testValues.Count; i++) { if (testValues[i].GetType() == typeof(TextBox)) { double res = 0; if (!string.IsNullOrEmpty(((TextBox)testValues[i]).Text) && !double.TryParse(((TextBox)testValues[i]).Text, out res)) { MessageBox.Show("Enter a valid value for " + labelNames[i]); isValid = false; break; } else if (string.IsNullOrEmpty(((TextBox)testValues[i]).Text)) { MessageBox.Show("Enter a Value for " + labelNames[i]); isValid = false; break; } else { staticInsts.instance(0).setValue(i, Convert.ToDouble(((TextBox)testValues[i]).Text)); isValid = true; } } else if (testValues[i].GetType() == typeof(ComboBox)) { staticInsts.instance(0).setValue(i, ((ComboBox)testValues[i]).SelectedItem.ToString()); } } } if (isValid) { ClassifierManager manager = new ClassifierManager(staticInsts); if (algoritmName == "Naive Bayes") { manager.Discreatization(manager.Instance); } else if (algoritmName == "KNN with k = 3") { manager.NominalToBinary(manager.Instance); manager.Normalization(manager.Instance); } double a = predictor.classifyInstance(manager.Instance.firstInstance()); string result = classes[(int)a]; MessageBox.Show("Result : " + result); } }
static void PropogateDataAndModels() { SetUp start = new SetUp(); start.RunSetup(out List <string> modelPaths, out Dictionary <string, bool> visualizationStatuses); GetClassifiersFromPaths(modelPaths, out List <AbstractClassifier> models); GetVisualizers(visualizationStatuses, out Visualizers); string configPath = null; XmlDocument config; bool outputStandardModels; if (start.FindConfigPath(ref configPath)) { config = new XmlDocument(); config.Load(configPath); outputStandardModels = Convert.ToBoolean(config.DocumentElement.SelectSingleNode("settings").SelectSingleNode("outputStandardisedModels").FirstChild.Value); } else { throw new Exception("Config path not found."); } if (outputStandardModels) { OutputStandardisedModels(config, models); } if (start.GetDataPath(config, out string dataPath) == true) { warehouse = new DataWarehouse(dataPath); } else { throw new Exception("No data found."); } if (start.GetTranslatorPath(config, out string translatorPath) == true) { Console.ForegroundColor = ConsoleColor.Black; Console.BackgroundColor = ConsoleColor.Green; Console.WriteLine("Translator file found: " + translatorPath); Console.ResetColor(); translator = DataTranslator.LoadTranslatorFromFile(translatorPath); } else { translator = new DataTranslator(); } start.GetVisualizationDirectory(config, out VisualizerOutputDir); cm = new ClassifierManager(models.ToArray()); }
public void TestClassifierCreateViewTypeIsSynchAndClassifierTypeIsSmartView() { ClassifierName = ClassifierName + "" + RandomNumber; ClassifierManager.CreateNewClassifier("Synchronized", "SmartView", "", false); ClassifierManager.SaveClassifier(ClassifierName); ClassList.RecordedMethod1(ClassifierName); ClassifierManager.VerifyClassifierTitleAndStatusBar(ClassifierName, "Synchronized"); // ClassifierManager.LoadOpenClassifierWindw(ClassifierName); // ClassifierManager.VerifyClassifierListedInClassifierListOnOpenClassifierWindow(ClassifierName); // ClassifierManager.ClickOpenButtonInOpenClassifierWindow(); }
public JsonResult Get(int id) { SecurityManager sm = new SecurityManager(); CoreLogic cr = new CoreLogic(); ClassifierManager clsm = new ClassifierManager(); //var clases5 = clsm.GetClassifier_rel(100); var clases = clsm.GetClassifiers(); Classifier cls = clsm.GetClassifier(101); return(Json(cls)); }
public void TestCloseClassiferManager() { ClassifierManager.CloseClassifierManager(ClassifierName); }
public void TestLaunchClassiferManager() { ClassifierManager.LaunchClassifierManager(); }